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Abstract

Blockchains implement monetary systems operated by committees of nodes. The robustness
of established blockchains presents an opportunity to leverage their infrastructure for creating
expansion chains. Expansion chains can enhance scalability, provide additional functionality to
the primary chain they leverage, or implement separate functionalities, while benefiting from the
primary chain’s security and the stability of its tokens. Indeed, tools like Ethereum’s EigenLayer
enable nodes to stake (deposit collateral) on a primary chain to form a committee responsible
for operating an expansion chain.

But here is the rub. Classical protocols assume correct, well-behaved nodes stay correct
indefinitely. Yet in our case, the stake incentivizes correctness—it will be slashed (revoked) if
its owner deviates. Once a node withdraws its stake, there is no basis to assume its correctness.

To address the new challenge, we present Aegis, an expansion chain based on primary-chain
stake, assuming a bounded primary-chain write time. Aegis uses references from Aegis blocks to
primary blocks to define committees, checkpoints on the primary chain to perpetuate decisions,
and resets on the primary chain to establish a new committee if the previous one becomes ob-
solete. It ensures safety at all times and rapid progress when latency among Aegis nodes is low.

1 Introduction

Blockchains like Ethereum [63] implement monetary systems and allow users to deploy smart con-
tracts [58] with arbitrary logic. The users issue transactions to exchange assets and interact with
smart contracts. Blockchain nodes aggregate transactions into blocks, forming a chain that de-
termines the system’s state. However, as blockchain adoption grows, scalability has emerged as a
critical challenge [19, 65]. Blockchains have limited throughput, often high latency, and are limited
to deterministic execution.

To address these scalability issues and implement new functionality, numerous systems expand
a primary blockchain in various ways [37]. Some systems improve scalability by offloading compu-
tation, thereby enhancing performance and reducing costs [56, 31]. Other expansion systems serve
complementary purposes. These include oracles that aggregate external data for smart contract
interactions [18, 26], and mechanisms for generating verifiable randomness [17].

In some cases, it is possible to implement an expansion as a separate Proof of Stake (PoS)
blockchain. PoS protocols allow users to stake—lock their tokens as collateral [34, 21, 22]. Until
they unstake—withdraw the collateral—they are active nodes, allowed to create new blocks. If
they misbehave, they are penalized via slashing [14], losing all or part of their collateral. This
approach works well for major blockchains that have reached a critical mass of participants and
assets [1]. However, smaller nascent systems do not have sufficient reputation to rely on long-term
participation of established nodes. Such nodes help new nodes that join the system to overcome
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long-range attacks [13, 23], where an adversary presents an alternative history, indistinguishable
from the true one. Additionally, in smaller systems, the value of tokens and hence the collateral
amounts are volatile, leaving the system vulnerable to hijacking by a well-funded adversary.

To overcome this, stake can be managed on the primary blockchain, taking advantage of its
decentralization and reliability: The nodes maintaining the expansion blockchain first lock their
stake on the primary chain. Then, they agree on the series of blocks using a consensus protocol [16].
Managing stake for external tasks is already possible on major blockchains. EigenLayer [60] on
Ethereum and Subnets [38] on Avalanche [52] are prominent examples. If nodes misbehave, they
are penalized by losing their deposit on the primary chain. The underlying consensus protocol of
the primary chain guarantees safety and liveness assuming that a sufficient majority of nodes are
correct, i.e., follow the protocol.

Prior work (§2) extensively explored reconfiguration of nodes in Byzantine Fault Tolerant (BFT)
systems [44]. Expansion chains like Polygon [42] and Avalanche subnets [38] have adopted these
approaches. However, these systems rely on strong assumptions, such as synchronous communica-
tion among nodes or that nodes remain correct indefinitely. In practice, these assumptions may
not hold: A user can unstake on the primary chain at any time, removing their collateral and
hence their incentive to follow the expansion chain protocol. Thus, a node that is active when it is
defined in a primary block might not be active by the time an expansion chain block is generated.
Additionally, like the aforementioned PoS protocols, such expansion chains remain vulnerable to
long-range attacks.

To address these challenges, particularly the vulnerability to long-range attacks and the poten-
tial for nodes to become Byzantine after unstaking, we first outline a model (§3). Nodes stake and
unstake using the primary chain. Unstaking does not immediately withdraw the stake, but only
after a delay ∆active. A set of nodes that have stake locked at the same time are called a commit-
tee. Until any of them completed unstaking, the committee is active. As is standard [34, 50], we
assume that at all times a sufficient majority of the nodes in each active committee are correct.
The model employs a hybrid communication approach: nodes communicate asynchronously with
each other until an unknown time tGST, after which message propagation is bounded, as in the
partial synchrony model [25]. Nevertheless, at all times, nodes have synchronous access to read
the current state of the primary chain (as when running an Ethereum node) and can write to it in
bounded time (cf. [33]). This combination leverages the reliability of established blockchains while
accounting for potential delays in internode communication in new protocols.

We present Aegis1 (§4), an expansion blockchain that derives its security from a primary chain.
It could be used to provide additional functionality to a primary chain, or more generally, for a
blockchain unrelated to the primary chain, other than using its tokens as collateral.

The protocol includes a primary-chain contract that allows nodes to checkpoint the Aegis state.
The nodes construct a blockchain in which each Aegis block references both its predecessor and
a corresponding primary block (Figure 1). The committee defined by that primary block is the
committee in charge of generating the next Aegis block using a consensus protocol. While main-
taining the Aegis chain, its nodes occasionally checkpoint the latest block with the primary-chain
contract. In the happy flow, the checkpoints are less than ∆active apart, so there is always an active
committee.

However, creating an Aegis block might take too long due to internode communication delays.
If it takes longer than ∆active, there would be nothing to checkpoint. In this case, any Aegis node
can issue a reset on the primary chain to specify a new committee. At this point, the committee is

1Named after the powerful divine shield carried by Zeus and Athena in Greek mythology, which first appears in
Homer’s Iliad.
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Aegis chain

Primary chain

... A1 A2 A3 A4 A5 A6 A7 ...//

... P1 P2 P3 P4 P5 P6 P7 P8 ...//

∆active //

reset ref ref ref ref ref ref reset refchk
chk chk

Figure 1: Aegis and primary-chain blocks.

defined in the primary-chain reset, but not yet in any Aegis block, until one is generated. The risk
is that the committee defined by the reset and the one defined by the previous block both generate
a block at the same height (distance from chain root), forming a so-called fork. To prevent that,
both the protocol and the primary-chain contract enforce timing constraints, avoiding consensus
decisions that cannot be checkpointed and premature resets.

To prove the security of the protocol (§5) we show that correct Aegis nodes never disagree on
the blockchain content at any height. First, we use backward induction to show that if a block
is created by an active committee, then all of its ancestors were created by active committees.
This holds because this is verified for every block either by its child’s committee or by the primary
blockchain in a checkpoint. Then, using forward induction, we show that if all nodes agree up to
some height, a classical consensus protocol guarantees the necessary properties for the next block.
Similar arguments show validity, namely that if all nodes are correct and have the same input value,
no other value is logged. We then show that after tGST the protocol guarantees an active committee
forms and extends the blockchain. Straightforward indistinguishability arguments bridge the gap
between the static committee of the standard consensus protocol and the dynamic committees of
Aegis.

Aegis can be readily implemented to decentralize various services as expansion chains. We
conclude (§6) with practical considerations for performance and security.

2 Related Work

To the best of our knowledge, previous work on dynamic committees and reconfiguration in BFT
systems did not consider nodes that stop being correct after their tenure (§2.1). Various work on
expansion chains addressed the problem under this assumption (§2.2) and overcoming long-range
attacks with checkpointing (§2.3). Others utilize multiple chains to form a new one (§2.4). Aegis
can be used by Layer-2 rollups that aggregate transactions (§2.5), but it solves a distinct problem.

2.1 Classical Reconfiguration

The reconfiguration problem received intensive treatment in the classical distributed-systems lit-
erature [2]. In this setting, committees are not defined by stake on the primary chain, as in our
setting, but are rather defined by an external process.

Lamport et al. [43] implement reconfiguration in a crash-fault model using a separate, trusted
configuration master. The nodes in one committee can trigger a reconfiguration by calling the
configuration master, allowing the protocol to handle many failures by pruning out crashed nodes.
However, this approach relies on having the new committee obtain the previous state from the
previous committee, which is not reliable in a Byzantine model, particularly in our model where
after deprecation the old committee behaves arbitrarily.
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Aubin et al. [4] use black-box individual consensus algorithms. On reconfiguration, they require
the previous committee to agree on which entries are aborted, such that this committee will not
decide on them. This is also not possible in our model, where the nodes might become deprecated
due to unstaking before completing the abort.

Abraham and Malkhi [2] identify that reconfiguring protocols rely on wedging, where each
consensus result is stored by a non-byzantine replica. This replica can be, e.g., a larger set of
replicas; it can be mapped to the primary chain in our model. They propose a synchronous
reconfiguration protocol, but it relies on bounded latency among nodes to identify the wedging
state. This is not possible in our model, where due to asynchrony previous committees might be
deprecated before taking part in this protocol.

PBFT [16] and Zyzzyva [35] work in a fully asynchronous environment and use 3f + 1 replicas
for reconfiguration. However, their progress relies on access to this reconfiguration master, implying
that in case of reconfiguration events, the latency is at least long enough to read and write to the
primary chain, even after tGST. This is not acceptable for our purposes. On the other hand, note
our model is stronger: We assume synchronous access to the primary chain.

Matchmaker [62] assumes crash-fault only, and that nodes can access deprecated nodes. They
explicitly assume that joining nodes access a matchmaker (implemented as a set of processes,
mapped to our primary chain) to obtain the current state. All access is asynchronous, allowing to
complete the access to the matchmakers. Mapping to our model, this would imply that the time
to create every block is at least the time to read and write to the primary chain. Again, this is
unacceptable for our purposes.

Kuznetsov and Tonkikh [36] consider slow clients, that might access a deprecated committee
that became Byzantine and can behave arbitrarily. To overcome this, nodes are required to destroy
deprecated private keys. However, this assumption does not apply to our model. We can’t assume
that nodes would delete their old keys, since in our model, we assume that nodes of an active
committee only follow the protocol due to the threat of slashing. But, slashing for not deleting old
keys is not possible, as no one can tell when a node doesn’t delete its old keys.

Note that the cooldown period for unstaking, ∆active, does allow bounded-time access to previous
committees that are still active. This assumption is weaker than in prior work where previous
committees remain active indefinitely. Nevertheless, it allows us to achieve the desired guarantees
with Aegis.

2.2 Expansion Chains

Expansion chains are blockchains that rely on a primary chain for security. They can be imple-
mented using EigenLayer [60], Avalanche subnets [38] and Polygon 2.0 [42]. Compared to a new
blockchain, an expansion chain is easier to bootstrap, as it can rely on the security of the primary
chain. Nodes can be required to stake on the primary chain, using its tokens as collateral to ensure
their good behavior. Due to the established security of the primary chain, the value of its tokens
is more stable, and the nodes are more likely to remain correct.

On the surface, securing an expansion chain seems like the classical State Machine Replication
(SMR) [45] with dynamic committee reconfiguration [44]. Essentially, the committee for expansion
block k agrees not only on the block but also on the committee for the subsequent expansion
block k+1, as defined in a primary block. However, this approach relies on an assumption that does
not hold in our case, namely, that a correct node remains correct indefinitely. But the generation of
expansion block k+ 1 could take arbitrarily long; meanwhile, the members of its committee might
unstake in the primary chain, so they are no longer incentivized by collateral. The result is either
a deadlock (if we ignore blocks by a deprecated committee) or a block generated by a committee
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that is no longer incentivized to follow the protocol. Aegis addresses this issue by using references
from the expansion blocks to the primary blocks to define the committee for the next block, and
allowing for a reset if the committee becomes obsolete before it generates a block.

BMS [57] is a mechanism for secure reconfiguration of blockchains via a trusted platform that
manages reconfiguration process. However, it requires expansion chains to approve each reconfig-
uration, which is not always possible: If a node wishes to withdraw their stake, it is not generally
acceptable to wait for such an approval, particularly if the expansion chain is asynchronous and the
time is unbounded. Aegis does not require such approval, and nodes can independently withdraw
without affects its security.

Avalanche subnets [38] are blockchains whose validators are defined, added and removed by
transactions on a primary chain. Avalanche proposes this mechanism and facilitates open partici-
pation in its so-called elastic subnets. EigenLayer [60] allows Ethereum validators to restake their
Ethereum-protocol deposits, committing to validating a secondary system with the same stake used
for Ethereum, meaning that the same deposit can be slashed due to misbehavior in either system.
Both mechanisms provide a new tool for creating expansion protocols, but leave open the question
of securing the protocol, which Aegis addresses as mentioned above.

Polygon 2.0 [42] secures a secondary blockchain using Ethereum as primary blockchain. It uses
staking on Ethereum to define the nodes maintaining separate blockchains. However, it encounters
the aforementioned issue of SMRs with dynamic reconfiguration, meaning its security implicitly
relies on either synchronous communication among Polygon nodes or that correct nodes remain
correct indefinitely. This is because node set changes are events on Ethereum [40] and are voted
in Polygon [41]. Therefore, if it can take arbitrarily long to reach consensus and members are not
indefinitely correct, by the time they reach consensus they might not be correct. In contrast, Aegis
does not rely on either assumption, while always ensuring safety and ensuring progress after tGST.

Merge-mining is another approach to secure expansion blockchains [11]. It is a technique for
Proof-of-Work (PoW) systems [46, 55], where nodes are called miners and they generate blocks by
guessing hash preimages. In merge-mining, a Proof of Work miner mines on two PoW blockchains
with the same computational power: each hash it calculates can result in a block for either chain.
This allows the computational power securing a major PoW chain to also secure an expansion
chain. However, if a miner misbehaves when generating an expansion chain block, it suffers no
penalty on the main chain, which remains oblivious. In Aegis such misbehavior is penalized, so
nodes are strongly incentivized to follow the protocol.

2.3 Long-Range Attacks and Checkpoints

Long-range attacks are a type of attack where an adversary presents an alternative history, indis-
tinguishable from the true one, to the network. This can be used to double-spend coins, or to
prevent the network from reaching consensus. Newcomers to the network are vulnerable to these
attacks, as they do not have the full history of the blockchain.

Long-range attacks are possible in both PoW and PoS blockchains. In PoW, an adversary
performing a long-range attack is required to hold a majority of the computational power, and use
it to mine a longer chain than the honest chain2. However, this form of attack is more severe in
PoS, as it doesn’t require significant computational power, only a majority of the stake at a given
time. This is exacerbated by the fact that old nodes, who have already withdrawn their stake, are
no longer at risk of being slashed.

Previous work has explored checkpoints to prevent long-range attacks. Every several blocks, a
block is checkpointed by nodes, in order for newcomers to later retrieve the latest checkpoint to

2More specifically, this is called a 51% attack [8].
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be able to distinguish between the current chain and a long-range attack. Earlier work considered
social consensus [9, 13, 21], where a committee of participants, independent of the blockchain,
agrees on the current state of the blockchain and communicates it to others via some external
medium. Later, some works utilized a BFT consensus protocol to perform the checkpointing [51, 53].
Afterward, the idea of using a separate proof-of-work blockchain to timestamp checkpoints was
introduced [32, 6, 59]. These works suggested injecting a digest of the checkpoint into a secure
PoW blockchain as a transaction, thus timestamping the checkpoint. Another related work is
Winkle [5], which suggests weighing checkpoints based on the volume of transactions which were
place in blocks following the checkpoint.

Similarly, Aegis enjoys protection from long-range attacks due to its checkpoints. But unlike
them, even if the expansion chain is stalled, reconfiguration occurs in the primary chain, and Aegis
ensures that this will be reflected in the expansion chain. None of the aforementioned solutions can
guarantee this property, as they all implement reconfiguration within the expansion chain.

2.4 Chain Combining

Fitzi et al. [27] and Wang et al. [61] combine multiple ledgers to create a ledger with better prop-
erties. However, unlike Aegis, all steps are taken within the ledgers, unlike Aegis, whose expansion
chain can progress by expansion-chain consensus steps that are not immediately checkpointed.

2.5 Layer-2 Blockchains

Various systems utilize a trusted primary blockchain to validate and secure second-level applica-
tions. This includes rollups that increase the primary chain’s throughput, and offer lower latency
and cost using optimistic [31, 3, 47] and zero-knowledge [56, 39] methodologies. Gudgeon et al. [30]
provide a comprehensive systemization of knowledge. However, while the validity of the operations
of those systems is guaranteed by the underlying blockchain, their content is, by and large, approved
by centralized services [39, 47]. In contrast to those solutions, Aegis implements a decentralized
sequencing mechanism, which can be used by any of those rollups together with their on-chain
validation mechanisms.

Other solutions include so-called sidechains and payment channels. Sidechains (e.g., [48, 29])
are independent blockchains with mechanisms to transact with a primary chain, but their security
is independent of the primary chain, unlike the expansion chain in Aegis. Payment channels are
point-to-point channels [49, 24], which can aggregate several payments between two parties. These
can also be used to form a payment network, allowing payments between any two parties in the
network, without the need for a direct channel between them. But, as each channel is exclusively
controlled by its two counterparties, payment channels are not decentralized, like Aegis.

3 Model

The system (§3.1) includes a primary blockchain and a set of nodes. We assume a generic consensus
algorithm (§3.2) that the nodes use aiming to form a secondary blockchain (§3.3). Appendix A
summarizes the notation.
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3.1 Principals and Network

The system comprises an unbounded set of nodes (as in [34, 50]) and a primary blockchain (or
simply primary) denoted by L. Time progresses in steps. In each step a node receives messages
from previous steps, executes local computations, updates its state, and sends messages.

The primary chain is implemented by a trusted party that maintains a state including token
balance for each node and a so-called staked amount for each node. Initially, each node has some
initial token balance and zero staked tokens. The primary also maintains node-defined smart con-
tracts implementing arbitrary automatons. Nodes interact with the primary by issuing transactions
that update its state and interact with smart contracts. The primary chain aggregates transactions
into blocks and extends the blockchain at set intervals. Its state is the result of parsing the series of
all transactions. A node cannot guess the hash of a future block except with negligible probability.

A node can issue a transaction to stake, i.e., deposit some of their tokens, or unstake, i.e., order
the withdrawal of tokens she had previously staked. Unstaking completes ∆active steps after the
order transaction is placed in the chain. While a node’s tokens are staked, the node is considered
active. During this period, a node can either follow the protocol (and be considered correct) or
misbehave arbitrarily. Correct nodes adhere to the protocol while they are staked, if misbehavior
could result in losing their stake. However, once they unstake, they are no longer bound by the
protocol and can behave arbitrarily without risk of losing their stake.

The set of nodes that have staked but not yet unstaked after a specific block is called a commit-
tee; until the time any of them completed unstaking, the committee is active. In all committees,
the ratio of stake held by correct nodes is assumed to be greater than a constant threshold, denoted
by α.

Communication among nodes is reliable and partially synchronous: There exists a time tGST,
unknown to the nodes, and message delivery is only bounded after it. That is, if a message is sent
at time t then it arrives at all nodes by time max(t, tGST) + ∆prop. In particular, blocks published
by the nodes are delivered to all nodes, even those that stake much later.3

After tGST the set of active nodes stabilizes, no one stakes or unstakes.
Communication with the primary chain is synchronous: All nodes can observe the current state

of the primary chain and issue transactions that are added to it within a bounded time ∆L-write.
This assumption is stronger than the one for internode communication, but it is more reasonable
in this case because we rely on an already established primary chain. In practice, this assumption
is met by choosing conservative bounds for the time it takes to write to the primary chain.

3.2 Consensus Algorithm

We assume we are given an asynchronous (single-instance) Byzantine fault tolerant consensus pro-
tocol (e.g., [12, 15]) implemented in a function consensusStep. Called by a process, consensusStep
takes steps in the protocol, maintaining a local state as necessary. It is executed by a weighted set
of nodes N , given as a parameter. (We will later use the staked amount as the weight, thus N will
constitute a committee.) It takes a consensus instance ID, which is a pair of the set of nodes N and
a nonce id to distinguish different instances. It also takes a block b the caller wishes to propose. It
returns either a block if it reached a decision or ⊥ otherwise: consensusStep(b;N , id) → block or ⊥.

If starting at t0, the nodes in N call consensusStep in every step t ≥ t0 with the same (N , id)
and the aggregate weight of correct nodes (those who follow the protocol) is greater than α, then
the following guarantees hold.

3In practice [10], this network is implemented by the nodes’ peer-to-peer network, where nodes keep all published
blocks available.
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Agreement For all correct nodes i, j (maybe i = j) and times t, t′ (maybe t = t′), if node i’s
consensusStep call at step t > t0 with ID (N , id) returns b ̸= ⊥ and node j’s consensusStep
call at step t′ > t0 with ID (N , id) returns b′ ̸= ⊥, then b = b′.

Validity If all nodes in N are correct and they all execute consensusStep with the same ID and
the same proposal b, then their consensusStep call never returns a non-⊥ value b′ ̸= b.

Termination For all correct nodes i and times t > max{t0, tGST} + ∆consensus, node i’s
consensusStep call with ID (N , id) returns a non-⊥ value.

The agreement property implies that a block, which a correct node has voted for, cannot be
overturned. Protocols that do not satisfy this property are out of scope.

We require the given BFT consensus protocol to include two additional functions. The function
consensusValidate takes a block and an ID (including the set N ) and returns True if and only if the
block is the result of those nodes, with a correct ratio above α, running consensusStep. (In practice
this can be implemented with cryptographic signatures.)

Finally, the protocol supports forensics, that is, it allows identifying misbehavior of the
nodes [54, 20]. Specifically, if the number of Byzantine nodes is larger than the bound, they
can cause an agreement violation. In such a case, the correct nodes can publish data allowing them
to identify misbehaving parties.

3.3 Goal

The goal of the system is to form an expansion blockchain, denoted by L. Each node i has an input
value vi for each position in the ledger. We do not consider the content of this blockchain, which
could serve as a decentralized sequencer, oracle, etc. (see §2). We only consider its blocks, which
are maintained by the nodes as local vectors. If a node stores a block in a position k in its local
vector we say it logs this block. Note that this is a chain, not a single-instance consensus as in
Section 3.2. The expansion blockchain should achieve the following (referring to expansion-chain
blocks and positions):

Agreement If a correct node i logs a block b in position k at time t and a correct node j logs
block b′ in position k at time t′ (maybe i = j and maybe t = t′) then b = b′.

Validity If all nodes are correct and their inputs for all positions v1, v2, . . . are the same, then in
all positions k no node logs a block with a different value uk ̸= vk.

Progress There exists a time t > tGST such that after t, each correct node logs new blocks at a
rate of at least 1/(∆consensus +∆prop).

When it is not clear from context, we refer to the blockchain properties as blockchain-agreement
etc., and the consensus properties as consensus-agreement etc.

4 Aegis

We overview the protocol design (§4.1), then present the Aegis blockchain structure (§4.2) and the
primary-chain contract (§4.3). We then describe the peer-to-peer protocol Aegis nodes execute to
form the blockchain (§4.4), and discuss the execution of the forensics procedure to identify and
penalize misbehaving nodes (§4.5).
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4.1 Protocol Outline

Aegis includes two components: A protocol that Aegis nodes execute and a smart contract that the
primary chain does. Roughly, the protocol executes a series of consensus instances logging blocks
consecutively. Each block b contains a reference (hash) to its parent. The blocks thus form a tree,
rooted at an agreed-upon Genesis block, with each having a height height(b): the number of edges
on the path from b to the Genesis block.

Each block also contains a reference to a primary block B. The primary block implicitly specifies
a committee—the set of nodes with staked tokens at the state of block B, weighted by the staked
amounts. (Nodes must include contact information in the staking transaction, so other nodes would
know where to send messages; we omit this detail to simplify the presentation.) This committee
is, in the good case, the committee that chooses the block following b. For example, in Figure 1,
Aegis block A2 references primary block P4, so the committee defined by block P4 chooses the
subsequent Aegis block A3.

Occasionally, Aegis nodes checkpoint blocks by sending them to the Aegis smart contract on
the primary chain. The contract receives the checkpointed block and accepts the checkpoint only
if its committee is active.

If Aegis could not produce a block for a duration of ∆active—that is, in the bad case—the
previous committee might not be active. In this situation, a new committee must be selected to
extend the chain. For this, some node issues a reset in the primary-chain Aegis contract. The
contract would accept the reset only if there were no checkpoints or resets in the last ∆active steps.
This initiates a new committee, specified by the block in which the reset occurs. This committee
can produce a new block following the previous checkpointed Aegis block using the committee
specified by the reset.

Figure 1 illustrates the topology of the Aegis chain (A1, A2, . . . ) and the primary chain
(P1, P2, . . . ). Most Aegis blocks (A2–A6) are generated by the committee referenced by their
ancestor signified by the same color. Some are checkpointed in primary blocks (P3, P5, P6). If a
checkpoint cannot be placed in time (and before the first Aegis block), a reset is issued (P1, P7),
and the subsequent Aegis block is generated by the committee of the reset block (A1, A7).

We proceed to describe the algorithm in detail.

4.2 Chain Structure

Aegis’s data structure includes the Aegis chain and relevant updates in the primary chain.
All nodes start with a single Genesis Aegis block (Algorithm 3 line 2). All Aegis blocks b (apart

from Genesis) have a parent Aegis block parent(b) and an Aegis-to-Primary reference to a primary
block refA→P (b). (For genesis only: parent(bgenesis) = ⊥ and refA→P (bgenesis) = ⊥.)

Each Aegis block b should be generated by consensus among the committee it specifies. The
committee is specified in one of two ways. First, an aegis block can have a reference to a reset in
a primary block, denoted ref resetA→P (b). If ref resetA→P (b) ̸= ⊥, the committee is the one specified by the
reset. Otherwise, the committee is the one specified in the primary block referenced by b’s parent,
i.e., refA→P (parent(b)). The function stakers(B) returns the committee specified by a primary
block B. The block should thus be valid according to the consensusValidate function with the
appropriate committee. The consensus instance ID is the pair consisting of its parent and reset
references.

The function isValid (Algorithm 1) validates all this—Note that this is only a data structure
validation that does not take into account committee activity. The protocol ignores blocks that are
invalid as checked by isValid.
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Algorithm 1: Valid block predicate
1 function isValid (b,L,B)
2 if b is Genesis then return True
3 if A checkpoint in L conflicts with b then return False
4 if parent(b) ̸∈ B then return False
5 if refA→P (b) ̸∈ L then return False
6 if refA→P (b) is not a descendant of refA→P (parent(b)) then return False
7 if ¬isValid(parent(b),L,B) then return False (Recursively validate parents)

8 if ref resetA→P (b) ̸= ⊥ then
9 if ref resetA→P (b) ̸∈ L then return False

10 if ref resetA→P (b) is not a descendant of refA→P (parent(b)) then return False

11 N ← stakers(ref resetA→P (b) )

12 else
13 N ← stakers(refA→P (b) )

14 if ¬consensusValidate(b,
(
parent(b), ref resetA→P (b)

)
,N ) then return False

15 return True

Algorithm 2: Aegis primary-ledger contract.
1 on Receive at time t entry e with pointed-to block b and its parent b′

2 if e is a reset then
3 assert no entries later than t−∆active (First entry or previous stale)
4 else (checkpoint)
5 assert refP→A(e) = b
6 assert parent(b) = b′

7 assert refA→P (b) ∈ L
8 if ref resetA→P (b) ̸= ⊥ then (b’s committee specified by reset)
9 assert ref resetA→P (b) ∈ L

10 Breset ← L(ref resetA→P (b)) (Primary-chain reset entry)
11 N ← stakers(Breset)
12 t0 ← tgen(Breset)

13 else (b’s committee specified by previous block)
14 Breset ← ⊥
15 assert refA→P (b′) ∈ L (Parent’s reference exists)
16 N ← stakers(L(refA→P (b′))) (Specified by parent)
17 t0 ← tgen(L(refA→P (b′)))

18 assert t < t0 +∆active

19 assert consensusValidate(b,
(
b′, Breset

)
,N )

20 assert height(b) > height(refP→A(previous checkpoint))

21 accept e (All asserts passed, register checkpoint/reset)

4.3 Primary-Chain Contract

The primary-chain contract (Algorithm 2) allows checkpointing Aegis blocks and initiating resets.
It receives entries submitted by Aegis nodes asking to register either a checkpoint or a reset.

It registers a reset if there are no entries in the last ∆active steps, indicating one is indeed
necessary; no other checks are required.

For a checkpoint, the contract receives an Aegis block to checkpoint along with its parent. It
verifies that the block correctly references a primary block earlier than this checkpoint. Similarly,
if the Aegis block has a reset reference, the contract verifies it points to a previous primary block.
It also verifies that the block’s Aegis parent references a previous primary block. The contract
then verifies that the committee that created the block is still active by comparing the current time
(known to the contract) to the time of the committee’s referenced block. It validates the block is
the result of the committee’s consensus by using the function consensusValidate . Finally, it verifies
that the block is higher (farther from the Aegis Genesis) than the last checkpointed block. Having
passed all these checks, the contract accepts the checkpoint and registers it.

Note 1. For a practical implementation, to reduce primary-chain overhead, the checkpoint can
include only the hash of the Aegis block b, and the following elements with proof they are included
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Algorithm 3a: Aegis algorithm for node i. (part 1/2)

Initialization:
1 Bi: A mapping, initially Bi(id(bgenesis)) = bgenesis, ∀id ̸= id(bgenesis) : Bi(id) = ⊥.
2 Li: A vector, initially Li(0) = bgenesis, ∀k > 0 : Li(k) = ⊥

Execution at step t: (return immediately if a referenced block is missing)
3 Bi ← Bi ∪ blocks received
4 Li ← Li∥Primary chain extension receieved (No conflicts by assumption)

5 Blast ← last contract entry in Li or ⊥ if none
6 if Blast is a reset then
7 if t < tgen(Blast) + ∆active −∆L-write then
8 Bcheckpoint ← latest checkpoint, ⊥ if none
9 N ← stakers(Blast)

10 t0 ← tgen(Blast)

11 else if t > tgen(Blast) + ∆active then (Previous reset stale)
12 issue reset and return
13 else (Too close to timeout)
14 return

15 else if Blast is a checkpoint then
16 Bcheckpoint ← Blast

17 N ← stakers(L(refA→P (Bi(refP→A(Bcheckpoint))))) (Committee from checkpointed Aegis block)
18 t0 ← tgen(L(refA→P (Bi(refP→A(Bcheckpoint))))) (Its generation time)

19 else (No block found)
20 issue reset and return (Initialize)
21 if Bcheckpoint = ⊥ then (First non-genesis block, committee by reset)
22 k ← 1
23 bcheckpointed ← bgenesis
24 b← bgenesis
25 else
26 bcheckpointed ← Bi(refP→A(Bcheckpoint)) (We have now found the last checkpoint)
27 forall k from |L|+ 1 to height(bcheckpointed) (Log all blocks up to checkpoint, inclusive)
28 if ∃b ∈ Bi s.t. b is an ancestor of bcheckpointed and height(b) = k then
29 Li(k)← b (Already verified via contract)
30 else
31 return (We are missing an ancestor of the checkpoint)

in the block: reference from b to the primary block, reference from b to a reset (could be ⊥), reference
from b to its parent b′. Similarly, for b′ we have its reference to a primary block.

Note 2. Theoretically, neglecting slashing enforcement, a protocol-agnostic append-only log would
suffice instead of a smart contract, with the nodes reading it and locally applying the contract logic.

4.4 Node Protocol

We are now ready to present the protocol executed by each node (Algorithm 3). All nodes start
with a single Aegis Genesis block (line 2) and in each time step proceed in three phases, as follows.

4.4.1 Sync to Latest Checkpoint

At the beginning of a step a node first reads the states of the primary and expansion blockchains
(lines 3–4). Then, it finds the latest checkpointed block as follows. If the latest primary-chain
entry is a checkpoint, it takes this checkpoint; the committee for the next block to log is expected
to be the one defined by the checkpointed block, i.e., according to the primary block it references
(line 17). Otherwise, if the latest entry is a reset and the committee defined by the reset is still
active (line 6), it takes the most recent checkpoint with the reset’s committee for the subsequent
block. If the reset’s committee is inactive, the node issues a new reset and returns, waiting for
it to take place. Finally, if there is no primary block entry then this is the first execution of the
protocol, so the node issues a reset and returns, waiting for it to take place.
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Algorithm 3b: Aegis algorithm for node i. (part 2/2)

32 k ← |L| (Equal to height(bcheckpointed))
33 b← bcheckpointed
34 if t < t0 +∆active then (Committee for next block still active)
35 Choose b′ ∈ Bi s.t. isValid(b′,N ,L,Bi) and parent(b′) = bcheckpointed, ⊥ if none
36 while b′ ̸= ⊥ do (Add blocks by active committees)
37 b← b′

38 L(k)← b
39 k ← k + 1
40 N ← stakers(refA→P (b))
41 Choose b′ ∈ Bi s.t. isValid(b′,N ,Li,Bi) and parent(b′) = b, ⊥ in none

42 if t < t0 +∆active − 3∆L-write then (Latest committee has enough time)
43 if b = bcheckpointed ∧Blast is reset then (No blocks since last checkpoint and following a reset)
44 b← consensusStep(propose a block,

(
L(|L| − 1), Blast

)
,N )

45 else (Last checkpointed or subsequent block’s committee is active)
46 b← consensusStep(propose a block,

(
L(|L| − 1),⊥

)
,N )

47 if b ̸= ⊥ then L(|L|)← b

48 if t = tgen(Blast) + ∆active − 3∆L-write and b ̸= bcheckpointed then (Deadline to issue checkpoint)
49 issue checkpoint for b and return
50 if t > t0 +∆active then
51 issue reset and return

(No-op if t0 +∆active −∆L-write < t < t0 +∆active)

If the only entry was a reset, namely, there are no checkpointed blocks, then this is the first
block after Genesis (lines 21–24). Otherwise, the node goes from the latest block it had confirmed
in previous steps (maybe starting from Genesis), logging in its local Aegis chain all ancestors up
to the checkpointed block (lines 27–29). If the node is yet to receive any of those, the algorithm
stops; the node will wait to receive them in subsequent steps.

4.4.2 Sync Past Checkpoint

Having caught up to the latest checkpoint, the node proceeds to log Aegis blocks finalized by
consensus that are yet to be checkpointed. This is only done if the latest checkpointed block’s
committee is still active (line 34), implying all subsequent committees are still active.

For each block, it adds it to the ledger and updates the next block’s committee (lines 34–41).
This is done for all Aegis blocks that were generated with currently active committees. Recall that
the committee of the first block after the checkpoint is defined by the primary block its parent
points to (lines 15–18), or by a reset block if it was produced that way (lines 8–10).

Once this is done, the node is up-to-date, having logged all previous blocks before the last
checkpoint and after the checkpoint (with active committees).

4.4.3 Extend the log

If the latest Aegis block specified committee has enough time remaining active, the node tries to
extend the chain by taking a consensus protocol step. Specifically, there should be enough time to
checkpoint a new block and complete the forensics procedure (line 42). The consensus is identified
by the parent and reset blocks (line 44 or 46). If the committee is no longer active, it issues a reset
(line 51) to enable progress in future steps. Because the committee defined by the checkpoint is
inactive, the contract will accept the reset.

Aegis nodes issue a checkpoint before the committee expires (line 49), which is sufficient for
correctness. Note that it could be that just one correct node got the block (line 44 or 46) before
the committee expires—the consensus protocol does not guarantee more. Then the perpetuation
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of this block relies entirely on this node issuing the checkpoint. But this is guaranteed since this
node is correct.

Note 3. The consensus ID for each Aegis block b includes both its ancestor refA→P (b) and its
reset reference ref resetA→P (b), the latter is ⊥ if the block’s committee is specified by its ancestor. This
guarantees that the committee could only start the consensus instance when it was active. Without
the reset reference, a committee C could be specified by a primary block, later become stale, create
a block b while being inactive, then a reset reinstates the same committee, which is now active,
allowing it to present b as the result of an active committee.

4.5 Forensics

Aegis takes advantage of the consensus protocol’s forensics support [54, 20] to penalize Byzantine
nodes if their number is greater than its threshold and they successfully violate agreement. The
forensics procedure encompasses both the contract and the peer-to-peer protocol, we describe it
only here for pseudocode readability.

A correct node identifies a violation if it observes two conflicting decided values (by a consensus
step, receiving a block, or a checkpoint). In this case, it issues a transaction notifying the contract,
which initiates the consensus protocol’s forensics procedure. Once the other correct nodes observe
the notification in the primary chain, they participate in the procedure, sending the necessary data
to the contract. The contract then identifies the Byzantine nodes and penalizes them by slashing
(revoking) their stake. The forensics procedure depends on the consensus algorithm’s details, and
optimization for reducing the primary-chain overhead is outside our scope.

5 Security Overview

The proof is deferred to Appendix B; we briefly review it here. To prove security we must show that
Aegis nodes do not register different values at the same height (Agreement), that if all have the
same value and none is Byzantine they decide that value (Validity), that after tGST they register
values frequently (Progress), and that violation leads to penalties.

We first show by induction that the ancestors of a block generated by an active committee
were also generated by active committees. Then, using an indistinguishability argument we show
that the guarantees of an existing consensus protocol (with an infinitely-running committee) are
preserved during the validity period of an Aegis committee.

The proofs of the three properties follow a similar structure. We prove by induction on the
Aegis block number. For each we show the property holds either due to the consensus guarantees,
or due to the interaction of the nodes protocol and the primary-chain contract.

6 Conclusion

We present Aegis, a novel expansion blockchain protocol whose nodes can join and leave in a
permissionless fashion by staking in a primary chain. Aegis guarantees safety at all times and
progress after tGST despite asynchronous communication among its nodes (up to tGST), using
committees dynamically specified by a primary-chain smart contract with synchronous access.

While Aegis can be deployed as-is on top of a primary blockchain, there are two practical aspects
to consider. Aegis requires primary-chain transactions in intervals close to the time for unstak-
ing ∆active. This implies a tradeoff between short unstaking time and low primary-chain overhead.
In terms of performance, Aegis can change committee membership at a lower frequency than every
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block. This allows using contemporary BFT state machine replication algorithms (e.g., [64, 28, 7])
that are more efficient than running a one-shot consensus instance per block.

The tools to deploy staking for Aegis are ready at hand, e.g., Avalanche’s elastic subnets [38];
direct implementation with a smart contract; and Ethereum’s EigenLayer [60], which enables recy-
cling of large stake amounts. Thus, Aegis opens the door for a new generation of truly decentralized
expansion blockchains.
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[6] Sarah Azouvi and Marko Vukolić. Pikachu: Securing PoS blockchains from long-range attacks
by checkpointing into bitcoin PoW using taproot. In Proceedings of the 2022 ACM Workshop
on Developments in Consensus, pages 53–65, 2022.

[7] Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-Kogias, and Alberto Son-
nino. Mysticeti: Low-latency DAG consensus with fast commit path. arXiv preprint
arXiv:2310.14821, 2023.

[8] Shehar Bano, Alberto Sonnino, Mustafa Al-Bassam, Sarah Azouvi, Patrick McCorry, Sarah
Meiklejohn, and George Danezis. Sok: Consensus in the age of blockchains. In Proceedings of
the 1st ACM Conference on Advances in Financial Technologies, pages 183–198, 2019.

[9] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. Bitter to better, how to make Bitcoin
a better currency. In Financial Cryptography and Data Security, pages 399–414. Springer,
Bonaire, 2012.

[10] Bitcoin community. Protocol specification. https://en.bitcoin.it/wiki/Protocol_

specification, retrieved Sep. 2013.

[11] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll, and
Edward W. Felten. Research perspectives on Bitcoin and second-generation cryptocurrencies.
In Symposium on Security and Privacy, San Jose, CA, USA, 2015. IEEE.

[12] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal of
the ACM (JACM), 32(4):824–840, 1985.

14

https://coinmarketcap.com/
https://coinmarketcap.com/
https://arbitrum.io/anytrust
https://en.bitcoin.it/wiki/Protocol_specification
https://en.bitcoin.it/wiki/Protocol_specification


[13] Vitalik Buterin. Proof of stake: How I learned to love weak subjectivity. https:

//blog.ethereum.org/2014/11/25/proof-stake-learned-love-weak-subjectivity,
November 2014.

[14] Vitalik Buterin. Slasher: A punitive proof-of-stake algorithm. https://blog.ethereum.org/
2014/01/15/slasher-a-punitive-proof-of-stake-algorithm/, January 2015.

[15] Ran Canetti and Tal Rabin. Fast asynchronous byzantine agreement with optimal resilience. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 42–51,
1993.

[16] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OsDI, volume 99,
pages 173–186, 1999.

[17] Amedeo Celletti. Random number oracle. https://www.random-oracle.com, retrieved
Sep. 2023.

[18] Chainlink. Chainlink 2.0 and the future of decentralized oracle networks. https://research.
chain.link/whitepaper-v2.pdf, April 2021. Retrieved May 2024.

[19] Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejinder Singh Mor. Blockchain
and scalability. In 2018 IEEE international conference on software quality, reliability and
security companion (QRS-C), pages 122–128. IEEE, 2018.

[20] Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable byzantine agree-
ment. In 2021 IEEE 41st International Conference on Distributed Computing Systems
(ICDCS), pages 403–413. IEEE, 2021.

[21] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and
applications to provably secure proof of stake. In Financial Cryptography and Data Security.
Springer, 2019.

[22] Francesco D’Amato, Joachim Neu, Ertem Nusret Tas, and David Tse. No more attacks on
proof-of-stake ethereum? arXiv preprint arXiv:2209.03255, 2022.

[23] Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos: An
adaptively-secure, semi-synchronous proof-of-stake blockchain. In Advances in Cryptology–
EUROCRYPT. Springer, 2018.

[24] Christian Decker and Roger Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Stabilization, Safety, and Security of Distributed Systems.
Springer, 2015.

[25] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of
partial synchrony. J. ACM, 35(2):288–323, 1988.

[26] eoracle. eoracle. https://eoracle.gitbook.io/, retrieved May 2024.
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A Notation

Table 1 summarizes key notation used in this paper.

Table 1: Notation

Symbol Meaning

α Minimum ratio of correct nodes in an active committee

tGST Global Stabilization Time

∆prop Network propagation bound after tGST

∆active Time between unstake order and funds withdrawal

∆L-write Time to write a block to the primary chain

∆consensus Time to reach consensus after tGST

H(B) = B̂ Hash of block B

L Primary ledger

L(B̂) Block B if B ∈ L, otherwise ⊥
L Aegis ledger

L(k) Aegis block at height k

parent(b) Parent block of block b

B(b̂) Block b if b is in block set B, otherwise ⊥
refA→P (b) Reference from block b to a primary block

ref resetA→P (b) Reference from block b to a reset in a primary block

refP→A(B) Checkpoint reference from primary block b to an Aegis block

stakers(B) Committee defined by primary block B

tgen(b) Generation time of block b

B Security

After showing that the ancestors of a block generated by an active committee were also gener-
ated by active committees (§B.1), we prove Aegis achieves agreement (§B.2), validity (§B.3) and
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progress (§B.4), and that it penalizes misbehaving nodes (§B.5). The security guarantees fol-
low (§B.6).

B.1 Active Committee Follows Active Committees

We call a committee active if its nodes’ collateral was locked recently enough so it could not be
withdrawn yet.

Definition 4 (Active committee). A weighted set of nodes N is an active committee at time t if
there exists a primary-chain block published in the interval [t − ∆active, t] and those nodes staked
collateral up to that block and did not unstake by that block.

We show that if a block is generated by an active committee then its ancestors were approved
by active committees. This is enforced for each block by the committee that generated the block,
whether it is defined by a reset or by a previous block whose committee is active.

Lemma 5. If at time t, a node observes (i.e., receives or generates) a block b such that block b’s
committee is active at t, then a node (perhaps the same node) receives the parent of b, parent(b),
at time t′, and parent(b)’s committee is active at t′.

Proof. If a node observes a valid block b, approved by the committee defined by it, there are two
options: If the committee is defined by its parent refA→P (parent(b)), then the committee is active
between tgen(refA→P (parent(b))) and t ≥ tgen(b). If the committee is defined by a reset pointed
by ref resetA→P (b), then the committee is active between tgen(ref

reset
A→P (b)) and t ≥ tgen(b). In both cases,

a quorum of the committee nodes approved block b during this interval—recall the block hashes
are unpredictable, so the consensus ID is generated on the generation of the primary-ledger block.
By the lemma assumption, during this time (up to t) the committee is active; therefore, there is
a time t̃ where a correct committee node i confirmed the correctness of parent(b): A node only
participates in block generation (lines 44 or 46) after approving its predecessor. Node i logged the
parent block b′ and validated its consensus in one of three ways: (1) It is the genesis block (line 2),
which needs no validation; (2) the parent is checkpointed (line 29), either following a series of resets
or not; then b′ was approved by an active committee by the time it was checkpointed, as verified
by the contract (Algorithm 2 line 18); or (3) the parent is not checkpointed; in this case the node i
that logged b only logged b′ because the committee of b′ is active at t̃ (Algorithm 3 line 34) and the
block is valid (lines 35, 41).

In conclusion, the parent block b′ was approved by an active committee.

We next deduce that the ancestors of a block approved by an active committee are all approved
by active committees. The proof follows by induction.

Lemma 6. If at time t a node observes a block b such that block b’s committee is active at t then
for all ancestors b′ of b, there exist a node (perhaps the same node) and time t′ such that the node
receives b′ at t′ and the committee of b′ is active at t′.

B.2 Agreement

For agreement we need two more lemmas. First, we ensure steps taken by the nodes are reflected
in the primary chain. We show that if the nodes agree on the ledger up to some height, then a
subsequent block will be accepted by the primary-chain contract.
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Lemma 7. If there are no two correct nodes that log different blocks at the same height for all
indices up to k − 1 and a node receives a valid block with index k at time t, then a block of height
at least k is checkpointed by step t+∆active and no resets are registered between t and t+∆active.

Note that the lemma does not state that the registered checkpoint is for a descendant of the
valid block at height k received.

Proof. The block’s committee is specified by the primary block its parent points to or by a reset
on L. Denote that L block by B. In both cases, some correct node i in that committee observes
block b. If within ∆active steps of B there is no checkpoint, then node i issues a checkpoint
(Algorithm 3 line 49). We should show the checkpoint is accepted by the contract. There cannot
be a reset before ∆active has passed, enforced by the contract (line 3). If the contract accepts
checkpoints for ancestors of b then b’s checkpoint will still be accepted when it arrives. Suppose the
contract accepted checkpoints of blocks at height k − 1 or earlier that are not ancestors of b. The
contract only accepts blocks approved by an active committee (Algorithm 2 line 19). So a correct
node in a quorum of an active committee approved a block at a height smaller than k, contradicting
the lemma assumption.

Thus, the only case where the checkpoint for b is not accepted is if a checkpoint for a block at
height k or more was already accepted, completing the proof.

We also show that consensus agreement applies to decisions taken by active committees.

Lemma 8 (Active committee agreement). In an execution of Aegis, an active committee does not
decide different values for the same consensus instance.

Proof. Consider an execution σ of Aegis where two correct nodes in a committee active in the time
range [t0, tf ] decide in steps t0 ≤ t1, t2,≤ tf two values v1 and v2 (one each) for the same consensus
instance.

Let σ′ be an execution with the same prefix as Aegis up to t1, and extended such that the com-
mittee remains active forever (its nodes never unstake), as in the consensus protocol assumptions.
By the agreement property of the consensus protocol, the two nodes cannot decide distinct values.

Since at t1 the nodes cannot distinguish between σ and σ′, the nodes take the same steps in σ
up to t1, so v1 = v2.

We are now ready to prove agreement.

Proposition 9 (Agreement). Two correct nodes do not log different blocks at the same height.

Proof. We prove by induction on the block number k.
Base. For k = 0 all correct nodes at all times log the Genesis block (Algorithm 3 line 2; L(0)

is never updated elsewhere). The contract initially has no checkpoints.
Assumption. For k > 0, assume that the claim holds for k − 1. That is, for all nodes i

and j (maybe i = j) and times t1 ≤ t2, if node i logs a block b at height k′ ≤ k − 1 at time t1
(Lt1

i (k
′) ̸= ⊥) and node j logs block b′ at height k′ at time t2 (Lt2

j (k
′) ̸= ⊥), then Lt1

i (k
′) = Lt2

j (k
′).

Also assume there is no checkpoint for a block b at a height k′ ≤ k − 1 and a node i that logs a
block b′ ̸= b at height k′.

Step. Now we prove for k. Assume for contradiction that there exist nodes i and j
(maybe i = j) and times t1 ≤ t2 such that node i logs a block b in position k at time t1 and
a node j logs block b′ ̸= b in position k at time t2: Lt1

i (k) = b ̸= b′ = Lt2
j (k).

The content of the ledger in positive positions is determined due to checkpoints (line 29) or
consensus (lines 38 and 47).
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If a node logs a block b in position k due to consensus (lines 38 or 47), then it is because
it received active committee consensus message for b (activity period verified in line 34). The
committee is defined by b’s parent or specified by a reset.

If a node logs a block b in position k due to a checkpoint (line 29), then it is because b is an
ancestor of a checkpointed block b̂. The checkpointed block b̂ is due to an active committee verified
by the contract (Algorithm 2 line 19). Therefore (Lemma 6), all ancestors of b̂ are also approved
by active committees. In particular, block b is approved by an active committee. That committee
is either the one defined by the previous block, or specified by a reset.

In summary, both blocks b and b′ are created by active committees, each either defined by a
reset or by the committee referenced by the previous block.

We now consider each of the possible cases. By the induction assumption, both i and j agree
on the previous block. If the committees of both blocks are specified by the previous Aegis block,
since by assumption they agree on this prior block, that committee decided conflicting values,
contradicting the consensus protocol agreement property (Lemma 8).

Next, if the committees of both b and b′ are specified by reset blocks, we show it is the same reset
block. Assume for contradiction that block b (without loss of generality) is confirmed by the first
reset and that b′ is confirmed by a later reset. Since block b is approved by the first reset committee
(reset at time treset), by Lemma 7 a block of height at least k is issued a checkpoint before the reset
committee becomes stale, with the checkpoint being written by time treset +∆active for a block of
height at least k. The contract will only accept another reset after treset + ∆active (Algorithm 2
line 3), so after the checkpoint. A committee following a reset considers the latest checkpoint
(Algorithm 3 line 8), so a block b′ confirmed by the committee specified by the second reset cannot
extend the chain earlier than k + 1 and cannot have the same height as b. A contradiction.

Finally, consider the case where the committee of b (without loss of generality) is specified by
its parent and that of b′ is specified by a reset. There are two possible cases. In the first case,
refA→P (bk−1) is before ref resetA→P (b

′) in the primary chain. All nodes agree on all blocks up to k − 1
and an active node observed block b with height k, therefore (Lemma 7) a block at height k or
more is checkpointed before the contract accepts any reset. So a block at height k is checkpointed
before the reset defining the committee of block b′. An Aegis block b′ following such a subsequent
reset cannot result in a block at height k, a contradiction.

The alternative case is that ref resetA→P (b
′) is before refA→P (bk−1). In this case block b′ is not valid

due to the order of its parent reference and reset (Algorithm 1 line 10), so no node would log it.
Again, a contradiction.

Having reviewed all cases and reached contradictions, we conclude that no two nodes log different
blocks at the same height. Since the contract will only checkpoint a block at height k if its committee
is active, a checkpoint can only be produced if an active committee decides a different block at
height k. We have shown this is impossible, thus a checkpointed block is not different from a valid
block received by a node at height k.

This completes the induction step and thus the proof.

B.3 Validity

To prove validity, we first note that the consensus protocol guarantees validity of an active com-
mittee decision.

Lemma 10 (Active committee validity). In an execution of Aegis, if all committee members of
an active committee have the same input value, and Aegis executes the consensus protocol of this
committee, then no correct node outputs a different value.
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The proof is similar to that of Lemma 8. We are now ready to prove validity.

Proposition 11 (Validity). Aegis achieves validity.

Proof. We prove by induction on the block number k.
Base. For k = 0 all correct nodes at all times log the Genesis block (Algorithm 3 line 2; L(0)

is never updated elsewhere). The contract initially has no checkpoints.
Assumption. For k > 0, assume that the claim holds for k − 1. That is, for all nodes i and

times t, if node i logs a block b at height k′ ≤ k − 1 at time t1 (Lt1
i (k

′) ̸= ⊥) and all nodes are
correct with input vk′ for height k′, then Lt1

i (k
′) = vk′ . Also assume there is no checkpoint for a

block b at a height k′ ≤ k − 1 with value different from vk′ .
Step. Now we prove for k. Assume for contradiction that there exists a nodes i and time t

such that node i logs a block b in position k at time t and Lt1
i (k) = b ̸= vk.

The content of the ledger in positive positions is determined due to checkpoints (line 29) or
consensus (lines 38 and 47).

If a node logs a block b in position k due to consensus (lines 38 or 47), then it is because
it received active committee consensus message for b (activity period verified in line 34). The
committee is defined by b’s parent or specified by a reset.

If a node logs a block b in position k due to a checkpoint (line 29), then it is because b is an
ancestor of a checkpointed block b̂. The checkpointed block b̂ is due to an active committee verified
by the contract (Algorithm 2 line 19). Therefore (Lemma 6), all ancestors of b̂ are also approved
by active committees. In particular, block b is approved by an active committee. That committee
is either the one defined by the previous block, or specified by a reset.

In both cases, that committee decided on an invalid value, contradicting the consensus protocol
agreement property (Lemma 10).

This completes the induction step and thus the proof.

B.4 Progress

Finally, we show Aegis extends the ledger after tGST. To prove progress, we first show that consensus
termination applies to active Aegis committees after tGST.

Lemma 12 (Active committee termination). In an execution of Aegis, after tGST, a node in an
active committee decides within ∆consensus steps.

Proof. Consider an execution σ of Aegis where a node in an active committee participates in a
consensus instance in a step t ≥ tGST.

Let σ′ be an execution with the same prefix as Aegis up to t+∆consensus, and extended such
that the committee remains active forever (its nodes never unstake), as in the consensus protocol
assumptions. By the termination property of the consensus protocol, the node decides by t +
∆consensus.

Since at t+∆consensus the nodes cannot distinguish between σ and σ′, the nodes take the same
steps in σ up to t+∆consensus, so the node decides in σ by t+∆consensus in σ.

Proposition 13 (Progress). Aegis guarantees progress.

Proof. A node adds a block to the Aegis ledger either since its descendant is checkpointed (Algo-
rithm 3 line 29) or since it is approved by an active committee (Algorithm 3 line 38 or 47). In both
cases, the result is that within at most ∆active steps it is checkpointed in the primary chain and
seen by all correct nodes (Algorithm 3 line 49).

22



If at time t the Aegis checkpoint is later than t −∆active +∆L-write, the nodes take consensus
steps and decide within ∆consensus steps (Algorithm 3 line 46, Lemma 12). However, if the consensus
runs for too long, and its result might not be checkpointed in time, it is abandoned (Algorithm 3
line 51). Then no progress can be made until ∆active after the last checkpoint/reset and a new
committee is instated with a new reset (line 51). The reset is registered within ∆L-write steps
and a new committee reaches consensus within ∆consensus (Lemma 12), guaranteed after tGST

because ∆consensus < ∆active −∆L-write.
From that point on, a new consensus is reached within ∆consensus steps (Lemma 12) and prop-

agated to all correct nodes within ∆prop, at which point a new consensus instance is started. The
interval between blocks is thus bounded by ∆consensus +∆prop, as required for progress.

Note. Independent Proof-of-Stake chains are vulnerable to long-range attacks, where a deprecated
committee forms an alternative history long after it unstaked. Joining nodes cannot distinguish
between real history and the forged one. Aegis is not vulnerable to this attack due to the security
of the primary chain.

B.5 Slashing

Enforcing the desired behavior of correct nodes while they are active necessitates penalizing them
if they successfully violate safety (Agreement or Validity). We show Aegis achieves this.

Proposition 14 (Penalty). If a node i belongs to an active committee that violates the consensus
safety, it will be penalized.

Proof. With even a single Byzantine node in the committee, validity vacuously holds. Thus, the
only potential safety violation is for agreement, resulting in two distinct nodes deciding different
decisions. If a node decides a value at height k, then this or another node will issue a checkpoint for
a subsequent block at height at least k within ∆active−3∆L-write steps (Algorithm 3 line 49). Thus,
if a node i decides a value vki and a node j decides a value vkj ̸= vki , then one of them will find out
once the first checkpoint is written to the primary chain or earlier through direct communication of
a consensus step (line 44 or line 46) or from received blocks (line 38). Once a node detects such an
agreement violation, it issues a forensics procedure by publishing the necessary information to the
blockchain. This process is completed within ∆L-write steps, at which point its counterpart does
the same, completing the on-chain forensics process while the committee of the violating nodes is
still active. Thus, the contract can penalize the stake, which is yet to be withdrawn.

B.6 Aegis Security

The conclusion follows directly from propositions 9, 11, and 13, since nodes are penalized
(Lemma 14) for violating safety.

Theorem 15. Aegis ensures Agreement, validity, and progress.
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