
Blink: An Optimal Proof of Proof-of-Work1

Lukas Aumayr2

TU Wien, lukas.aumayr@tuwien.ac.at3

Zeta Avarikioti4

TU Wien and Common Prefix, georgia.avarikioti@tuwien.ac.at5

Matteo Maffei6

TU Wien and CDL-BOT, matteo.maffei@tuwien.ac.at7

Giulia Scaffino8

TU Wien and Common Prefix and CDL-BOT, giulia.scaffino@tuwien.ac.at9

Dionysis Zindros10

Stanford University and Common Prefix, dionyziz@gmail.com11

Abstract12

Designing light clients for Proof-of-Work blockchains has been a foundational problem since Na-13

kamoto’s SPV construction in the Bitcoin paper. Over the years, communication was reduced from14

O(C) down to O(polylog(C)) in the system’s lifetime C. We present Blink, the first provably secure15

O(1) light client that does not require a trusted setup.16

2012 ACM Subject Classification Security and privacy → Distributed systems security17

Keywords and phrases PoW Blockchains, Light Client, Proof of Proof-of-Work18

1 Introduction19

It is impractical for a blockchain user, such as a wallet, to download and verify the whole chain20

due to communication, computation, and storage constraints. In the seminal Bitcoin white21

paper [29], Satoshi Nakamoto predicted this need for efficiency and designed a light client22

called the Simplified Payment Verification (SPV) protocol, which decouples the download23

of the execution layer data (transactions) from the consensus layer data (block headers).24

An SPV client retrieves all block headers and verifies them according to the longest chain25

consensus rule. This process requires communication that grows linearly with the systems’26

lifetime as the header chain grows at a roughly linear rate.27

Several subsequent works optimized this concept, introducing superlight clients whose28

communication complexity is only polylogarithmic (succinct) in the lifetime of the system [25,29

21, 22, 12]. Nevertheless, these protocols are not out-of-the-box compatible with Bitcoin but30

instead require a consensus fork.31

Designing a client with constant communication complexity has remained an elusive goal32

over the past dozen years. This paper fills this gap.33

Contributions. In this work, we present Blink, a novel interactive PoW light client with34

constant communication complexity. In a nutshell, the Blink client connects to a set of full35

nodes, one of which is honest. The client locally samples a random value η, includes it in a36

transaction Txη, and sends it to the full nodes. For instance, Txη can simply be a payment37

to a vendor’s fresh address, which was sampled with high entropy. Then, Blink waits for Txη38

to be included in a (high-entropy) block and confirmed. The full nodes respond to the client39

with a proof π consisting of 2k + 1 consecutive blocks, with the high-entropy block in the40

middle and k blocks before and after it (see Figure 1); k is the security parameter [18], e.g.,41

the conventional 6 confirmation blocks in Bitcoin. Importantly, full nodes do not send the42

full header chain to the client. The constant-sized proof π ensures that the first block in the43

© Lukas Aumayr, Zeta Avarikioti, Matteo Maffei, Giulia Scaffino, Dionysis Zindros;
licensed under Creative Commons License CC-BY 4.0

Workshop on Scalability and Interoperability of Blockchains 2024.
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2 Blink: An Optimal Proof of Proof-of-Work

proof is stable in the chain and, therefore, it can be considered as a checkpoint or, in other44

words, as a new genesis block G′.45

η

k blocks k blocks

G′

Figure 1 Structure of the Blink’s proof π. The proof π consists of 2k + 1 consecutive blocks, with
the block including the entropy η in the middle, and k blocks before and after it. The first block G′

in π is stable in the chain and acts as a new genesis block.

We highlight that Blink does not require any trusted setup, and we prove it secure under46

an honest majority of computational power, i.e., against less than 1/2 adversaries. We47

analyze security in the static PoW model introduced by the Bitcoin Backbone [18], and we48

adopt the light client state security definitions introduced in [32]. In this model, we refine the49

problem of Proofs of Proofs-of-Work [25] and prove that Blink has optimal communication50

cost, building the first provably secure Optimal Proof of Proof-of-Work (OPoPoW) without51

trusted setup.52

Furthermore, Blink is a powerful tool that can be leveraged to develop a plethora of53

applications with enhanced efficiency compared to state-of-the-art protocols. Specifically, we54

present the following applications, all with constant communication costs:55

1. Bootstrapping PoW blockchain clients, full nodes, and miners56

2. Active payment verification57

3. Past payment and ledger state verification58

4. Bridging PoW blockchains59

In further detail, Blink naturally provides a bootstrapping method: an SPV client or a light60

miner1 broadcasts Txη, and upon receiving π, they can efficiently select the tip of the current61

longest chain G′, and start running their protocol on top of it. As a result, the bandwidth62

cost of bootstrapping is reduced from linear to constant with respect to the lifetime of the63

system.64

Second, Blink allows trustless and efficient verification of on-chain payments. In particular,65

upon identifying the new genesis G′, an SPV protocol is executed on top of G′, finalizing the66

payment as soon as k confirmation blocks appear on top of Txη in the longest chain. Hence,67

the payment protocol has the same latency as a standard SPV client, but only constant68

communication complexity as at most 3k + 1 blocks are relayed in total for finalizing a69

payment.70

Third, assuming block headers include a commitment to the state of the ledger (e.g.,71

Ethereum PoW and ZCash) or include an efficient way of verifying the history of transactions72

(i.e., ancestry proofs such as block interlinking in the form of Merkle Mountain Ranges [4, 3]73

or vector commitments [13]), the client enables the extraction of any historical state of the74

ledger from G′ (including the current one). This means that users can use the Blink-based75

payment protocol to read any past transaction as well as any historical state of a smart76

contract. This approach reduces the communication overhead from polylogarithmic, as seen77

in state-of-the-art protocols [25, 12], to constant (in the system’s lifetime).78

Finally, Blink can serve as a building block for optimistic bridges, where π is used as a79

fraud proof. This way, Blink enables the first trustless, secure PoW bridge with constant80

1Light miners do not validate transactions included in the chain before they booted up thus, to be
sure they start mining on the correct tip of the chain, they need to run an efficient protocol to identify
the current longest chain [23]. They start fully verifying transactions after bootstrapping.

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 3

communication for relaying a transaction from a source to a destination chain. We also81

prove that a recent work claiming a trustless constant-size bridge construction [31] is, in fact,82

insecure.83

We provide a proof-of-concept implementation of Blink, and evaluate its communication84

cost for the conventional confirmation block value k = 6 and the block height at the time of85

writing. We underscore that Blink improves on all previous light client solutions in terms of86

bandwidth: SPV requires 67.3MB, NIPoPoWs requires 10KB, FlyClient requires 5KB, ZK87

ZeroSync requires 197KB, whereas Blink requires only 1.6KB. All of the solutions have the88

same latency as they all have to wait for k confirmation blocks.89

Related Work. The description of Nakamoto’s SPV client appears already in the90

paper that introduced Bitcoin [29]. A series of optimizations followed. The first succinct91

construction was the interactive Proofs of Proof-of-Work protocol [22] with polylogarithmic92

communication costs. Later work removed this interactivity and achieved security against93

1/2 adversaries but succinctness only in the optimistic setting (against no adversaries) [25].94

This construction was subsequently optimized [21], made practical [15], and redesigned with95

backwards compatibility in mind [26]. The optimistic setting limitation was alleviated in96

a follow-up work, achieving succinctness against all adversaries up to a 1/3 threshold [24].97

An alternative construction was also proposed, enabling security and succinctness against98

a 1/2 adversary, and adding support for variable difficulty [12]. All these solutions require99

polylogarithmic communication, whereas Blink requires only constant.100

Recently, generic (recursive) zero-knowledge (ZK) techniques were utilized to build101

constant communication light clients [11, 5, 33]. However, these approaches incur prohibitively102

high computational costs (or necessitate specialized blockchain deployments [5, 33] utilizing103

ZK-friendly cryptographic primitives [20]) and additionally require a trusted setup to generate104

and prove verification keys (which can only be removed if polylogarithmic communication105

is acceptable). Contrarily, Blink does not impose high communication costs nor a trusted106

setup.107

To develop a constant communication light client without a trusted setup, the idea of108

using only a small segment of the chain near the tip was proposed [2]. However, the proposed109

construction was shown to be susceptible to pre-mining attacks and thus insecure [31].110

Recently, another construction was introduced called Glimpse [31], combining the idea of111

[2] with the injection of a high-entropy transaction (which was originally introduced in [37,112

Chapter 5] but for a different purpose) to prove the provided segment of the chain is “fresh”113

and not pre-mined. Nevertheless, Glimpse remains insecure as we show in this work. We114

also leverage these ideas to design Blink, the first provably secure light client with constant115

communication that does not require a trusted setup.116

Finally, a similar quest for proof of stake light clients has achieved polylogarithmic117

complexity in an interactive setting [10]. For a review of the long-standing light client118

problem, see [14]. Light clients are also a cornerstone for building trustless bridges between119

chains, a question that has been explored in a multitude of works [34, 36, 28, 19]. In this work,120

we demonstrate how Blink can be utilized to construct a trustless and efficient optimistic121

bridge.122

Comparison. In Table 1, we compare the characteristics of existing light client protocols,123

including Blink. We denote by C the lifetime of the system (informally, the length of the124

blockchain) and by k the security parameter. According to the Bitcoin Backbone model, k is125

the common prefix parameter, which is constant for a protocol execution, albeit with the126

trade-off of logarithmically increasing the probability of failure in the lifetime of the system.127

We first observe that Glimpse [31] achieves O(k) communication but it is not secure in128

AFT SIB 2024

4 Blink: An Optimal Proof of Proof-of-Work

SPV[29] KLS[22],NIPoPoW [25] ZK Clients[33, 5, 11] Glimpse [31] Blink
FlyClient[12], Mining LogSpace[24]

Communication Complexity O(C) O(k polylog(C)) O(1) O(k) O(k)
No Trusted Setup ✓ ✓ ✗ ✓ ✓

Adv. Resilience 1/2 1/2 1/2 ✗(?) 1/2

Table 1 Comparison of light client solutions

the honest majority assumption (as shown in this work); its exact resilience, if any, remains129

unknown. ZK clients, on the other hand, achieve O(1) communication but necessitate a130

trusted setup; unlike Blink in which such assumption is not necessary. We further expose a131

trade-off between communication overhead and interactivity: prior state-of-the-art PoPoWs132

are non-interactive but require O(k polylog(C)) communication [25, 12, 22, 24]. Contrarily,133

Blink only requires O(k) communication but needs one round of interaction.134

2 Protocol Design135

In this section, we introduce Blink, the first provably secure, optimal PoW light client that136

does not require a trusted setup. We begin with a high-level overview of our protocol’s137

objectives and introduce a protocol abstraction that embodies these goals. Next, we present138

Blink, describing in simple terms the rationale behind its design and security. Throughout139

this work, we will use the term block to mean a block header.140

2.1 Optimal Proof of Proof-of-Work Client141

A client protocol is an interactive protocol between a set of provers P ∈ P maintaining a142

ledger, and a verifier V , i.e., the client. If the provers convince V about the current state of143

the ledger without asking V to download the whole ledger or execute all the transactions,144

then the client is a light client. In particular, if the verifier only receives a constant amount145

of data independently of the ledger’s lifetime, then the light client protocol has optimal146

communication.147

A client is convinced about the state of a ledger or, simply, of a blockchain, if it receives148

a block B fulfilling the following properties: (a) B is safe, i.e., it will never be reverted in the149

view of an honest node; (b) B is live, i.e., B was created recently and therefore the client has150

an up-to-date view of the state of the blockchain.151

Our goal is to design a client protocol that, with only constant communication complexity,152

satisfies the security notions defined in (a) and (b). Figure 2 illustrates a client protocol153

abstraction that realizes our objectives. It showcases the interaction between the set of154

provers (P) and the verifier (V) highlighting the pivotal components of our construction155

which ensure security: the constant-sized proof π that P sends to V and the extraction of156

block B from π, allowing V to read the current state of the ledger.157

Throughout the remainder of this work, we will omit discussing the initiation step, as it158

remains the same. For simplicity, we treat ledgers extracted from blockchains only, i.e., we159

assume the ledger is generated as the output of a blockchain protocol (and not, e.g., a DAG160

protocol). We generalize the discussion in later sections.161

2.2 Blink Client162

The ultimate goal of an OPoPoW client is to identify a recent, correct block of the ledger, by163

only receiving a constant-sized amount of data from the set of provers. Towards this, we164

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 5

Initiation
1. V connects to a set of nodes in P

Proof Construction

2. Nodes in P may interact with V

3. Nodes in P send to V a (set of) constant-size proof(s) π that includes a block B that is safe
and live

Block Extraction

4. V verifies π
5. V extracts B from π and terminates

Figure 2 Abstraction of an OPoPoW client protocol

start with a naive client construction; we identify security threats and propose solutions until165

we converge to a secure client protocol.166

A Naive Construction. Let us start analyzing one of the simplest constructions one167

might think of. The provers give the last k + 1 consecutive blocks in their longest chain to168

the client, who in turn verifies the validity of these blocks and accepts the first (the oldest)169

block in the proof as safe and live. We recall that in PoW blockchains, blocks are considered170

final after they have k confirmation blocks, where k is the safety parameter, e.g., in Bitcoin171

folklore blocks are considered final after 6 confirmations. According to [18], k is a constant for172

a protocol execution, which, however, implies that the blockchain’s security bounds degrade173

logarithmically with its lifetime. Since the client checks their validity, all blocks in the proof174

fulfill the PoW difficulty requirements. Trivially, this construction is broken: adversarial175

provers can have pre-mined k + 1 fake blocks stored somewhere, and when the client boots176

up, they provide the client with a block that is either not part of the longest chain or is177

outdated. Upon receiving different k + 1 blocks from honest and adversarial provers, the178

client cannot identify the correct chain with higher probability than random guessing.179

Preventing Upfront Mining Attacks. To prevent this upfront mining attack, the client180

V can locally sample a random string η and give it to the provers along with a time window181

T , within which V accepts a proof π [31]. Then, provers can then broadcast an entropy182

transaction Txη which embeds η to the blockchain network, and wait for it to be included in183

a block. We will call this block Ḃ and since it contains η, this is a high-entropy block. Before184

the timeout T expires, if k blocks are built on top of Ḃ, P sends to V a proof π consisting185

of Ḃ followed by its k confirmation blocks. Finally, V accepts Ḃ. Figure 3 illustrates the186

protocol presented in [31]; λ is a security parameter. While randomizing the proof π solves187

the upfront mining attack, it does not lead us to a secure client protocol.188

Indeed, we observe that an adversary A has a probability t
n < 1

2 to be elected as PoW189

block proposer, with n the total number of participants in the PoW game, out of which190

t are controlled by the adversary. This means that A has a non-negligible probability to191

censor Txη in the first k − 1 blocks after Txη was broadcast. If T is such that fewer than192

2k consecutive blocks are produced in T with overwhelming probability, the adversary can193

violate the liveness of the client with probability t
n , because honest parties cannot produce a194

valid proof of k + 1 blocks within time T . Figure 4 demonstrates this attack.195

Preventing Liveness Attacks. To protect the client from this liveness attack, one could196

take different directions: (A) remove the time window T (alternatively, increase it such that197

at least 2k blocks are produced in T with overwhelming probability), or (B) accept proofs of198

length less than k. In (A), V accepts the first proof π it receives, with π consisting of Ḃ and199

AFT SIB 2024

6 Blink: An Optimal Proof of Proof-of-Work

Proof Construction

5. V samples η
$← {0, 1}λ

6. V selects a time T in the future that corresponds to the expected creation time of k + 1 blocks
7. V sends η and T to every P ∈ P along with a request to return a light client proof π of length

k + 1 conditioned to η, within time T
8. P construct an entropy transaction Txη containing η and broadcast it to the blockchain network
9. As soon as a party P ∈ P has a proof π consisting of a block Ḃ containing Txη with k

confirmations blocks, P sends π to V

Block Extraction

10. V accepts π if it was received within time T , Ḃ contains Txη and has k confirmation blocks on
top of it

11. V extracts Ḃ from π and terminates

Figure 3 Naive client protocol [31].

k blocks

r0

η

ηη

T

time

Figure 4 Consider k = 4. The light client boots at round r0 and broadcasts the entropy η. With
significant probability, the adversary can censor Txη in the first k− 1 blocks after Txη was broadcast.
It results that honest parties might not find a proof π of sufficient length by the timeout T .

at least k confirmation blocks on top of it. In (B), V accepts the proof π that, by T , has the200

most confirmation blocks on top of Ḃ. In Figure 5, we present the client protocol for the (A)201

and (B) variants. While both these attempts safeguard the liveness of the client, the client’s202

safety is broken: V might accept a block that is not part of any honest party’s chain.203

We now describe the safety attack for (A), but a similar logic applies to (B) as well. After204

V broadcasts Txη, honest parties immediately include it on-chain, while the adversary A205

starts mining on a private chain that censors Txη. A can mine k − l blocks in its private chain,206

with 0 < l < k − 1, while honest parties only mine Ḃ with at most k − l − 2 confirmations.207

This can happen with non-negligible probability, as we are considering subchains with fewer208

than k blocks [18], with k being the safety security parameter. Then, A broadcasts their209

private chain, causing all honest parties to switch to the adversarial chain due to the longest210

chain rule. Honest parties subsequently include Txη in their new longer chain and keep211

mining on top of it. In the meantime, A starts privately mining on top of the abandoned212

chain that included Txη early on. Now, to create a valid proof, A only needs to privately213

mine l + 2 < k + 1 blocks, while honest parties need to mine k + 1 blocks. As a result, A214

can generate a valid proof faster than honest parties, and trick the client to accept a proof215

consisting of blocks that will not be part of the honest chain, thereby breaking security.216

Figure 6 illustrates this attack.217

The Blink Proof. Before detailing Blink, we observe that the safety attack in Figure 6218

relies on A privately mining in order to delay the inclusion of Txη in the main chain. However,219

such censoring can only succeed for a limited time, specifically less than k consecutive blocks,220

as extending a private chain beyond this would lead to a safety violation [18]. In other words,221

A may create up to k − 1 blocks faster than honest parties (with non-negligible probability)222

but not more than that: any honest majority will create k blocks faster than any minority223

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 7

Proof Construction

5. V samples η
$← {0, 1}λ

6. V sends η to every P ∈ P along with a request to return a light client proof π of length k + 1
conditioned to η

7. P construct an entropy transaction Txη containing η and broadcast it to the blockchain network
8. As soon as a party P ∈ P has a proof π consisting of a block Ḃ containing Txη with k

confirmations blocks, P sends π to V

Block Extraction

9. V accepts the first π it receives where Ḃ contains Txη and has k confirmation blocks on top of
it

10. V extracts Ḃ from π and terminates

Proof Construction

5. V samples η
$← {0, 1}λ

6. V selects a time T in the future
7. V sends η to every P ∈ P along with a request to return a light client proof π conditioned to

Txη within time T

8. P construct an entropy transaction Txη containing η and broadcast it to the blockchain network
9. At time T , each party P ∈ P sends to V its π, consisting of Ḃ containing Txη along with all

the subsequent confirmation blocks that P is aware of

Block Extraction

10. V accepts the π that has the most confirmation blocks on top of Ḃ containing Txη and was
received within time T

11. V extracts Ḃ from π and terminates

Figure 5 Insecure attempts (A) and (B), top and bottom respectively.

adversary, rendering the attack in Figure 6 infeasible.224

The client can securely accept a block of the blockchain, if they can identify it as a safe225

block, i.e., a block that is already k deep in at least one honest party’s chain [18]. Furthermore,226

the safe block also needs to be live, i.e., recent enough to be sufficiently close to the tip of227

the chain.228

We know that the adversary can only censor Txη for k − 1 blocks and it takes k additional229

blocks for Txη to become safe (Figure 6). Therefore, we modify π to be of length 2k + 1230

and to specifically contain Txη in the middle block Ḃ, i.e., at position k + 1, as depicted in231

Figure 1. However, if the client accepts Ḃ of the first valid proof received, safety is again232

violated by the same attack described before: A can create π before honest parties by using233

the k + (k − l − 1) blocks from the abandoned honest chain and mining l + 1 new blocks;234

meanwhile, honest parties must mine k > l + 1 new blocks. Nonetheless, π now being of235

length 2k + 1, it necessarily contains a safe block, i.e., a block that is at least k deep in236

the chain to be stable for all honest parties; this is true even if the π the client receives237

comes from A. In particular, π contains at least a block that was safe even before Txη was238

broadcast: the honest subchain starting from the block Ḃ included early on is at most of239

length k − 2 and at least of length 1, thus the first block in π is was already part of the240

honest parties’ stable chain (cf. Figure 7). Naturally, the first block in π is attached to241

genesis, otherwise honest parties would not have extended it. This holds true regardless of242

the strategy A follows: Honest parties only abandon their chain if they see a longer one.243

We note that for any π coming from an honest party, any block before the entropy block244

AFT SIB 2024

8 Blink: An Optimal Proof of Proof-of-Work

η

η

k blocks

k blocks< k blocks

r0 rr

time

Figure 6 Consider k = 4 and l = 1. The client broadcasts η at r0. A privately mines a subchain
of 3 blocks censoring Txη, while honest parties include Txη and only mine 2 blocks overall. At rr,
A releases the private chain, which is adopted by honest parties as per the longest chain selection
rule. Honest parties now need to mine 5 blocks to find a valid π. Contrarily, A needs to only mine 3
blocks. Hence, A finds π first.

η

k blocks

k blocks

r0 rr

< k − d blocks

η

d blocks

time

Figure 7 Consider k = 5. As in Figure 6, except that A censors Txη by d blocks also on the
lower branch, such that d ≤ k− 1 and s.t. the overall number of adversarial blocks before Txη on all
branches is smaller than k. This shows why it is not sufficient to take less than k blocks before Txη.

Ḃ is safe, as there are at least k + 1 confirmations. Thereby, the first block B of any 2k + 1245

proof π is always safe, i.e., it has at least k confirmations in the view of an honest party. As246

a result, the client can safely accept the first block in the first valid π it receives.247

Blink Protocol. In Figure 8 we showcase the pseudocode of the Blink protocol, while248

in Algorithm 1 we put forth the algorithm run by the Blink client, employing Algorithm 2;249

similarly, in Algorithm 3 we present the code run by provers. We use m 99K A to indicate250

that message m is sent to party A and m L99 A to indicate that message m is received from251

party A.252

We observe that the client reads a proof of length 2k +1, which is constant in the system’s253

lifetime, and accepts a block that is 2k blocks old, incurring a waiting time of k blocks,254

similarly to an SPV. Blink is the first PoW light client protocol that achieves optimal proof255

size with only at most one round of communication between provers and verifier.256

3 Applications257

In this section, we showcase how Blink can be used for different applications, ranging from258

verification of payments and state verification to bootstrapping and bridging.259

3.1 Payment Verification260

Consider a vendor that wants to check whether a particular buyer has made a payment for261

the purchase of a good. The vendor will only ship the goods after the client’s payment has262

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 9

Proof Construction

5. V samples η
$← {0, 1}λ

6. V sends η to every P ∈ P
7. P construct an entropy transaction Txη containing η and broadcast it to the blockchain network
8. As soon as a party P ∈ P has k confirmation blocks on top of the block Ḃ containing Txη, P

sends to V π consisting of Ḃ with k blocks before and k blocks after it

Block Extraction

9. V accepts the first π it receives consisting of 2k + 1 consecutive well-formed blocks where the
middle block contains η, i.e., π[k] = Ḃ

10. V extracts the first block of proof π, i.e., B := π[0], and terminates

Figure 8 Pseudocode of the Blink protocol

Algorithm 1 The algorithm ran by the verifier V , i.e., the Blink client. We split the proof π into
(π0, π1), with π0 allowing to identify a stable and recent block of the blockchain, i.e., the new genesis
G′, and π1 being the Merkle proof that verifies inclusion of η into the middle block of π0.

1: function VerifierG ()
2: η L99 {0, 1}λ

3: for P ∈ P do
4: η 99K P

5: while True do
6: π L99 P ▷ Only constant amount of data downloaded
7: (π0, π1) = π

8: if ValidG(π, η) then
9: return π0[0]

10: end if
11: end while
12: end for
13: end function

been verified. The Blink protocol, as described in Figure 8, only gives security for the first263

block in the proof and not, in particular, for the block containing Txη: indeed, the proof π264

accepted by the client might come from the adversary and, thus, the entropy block might265

not belong to the stable chain. In the payment setting, however, it is desirable to define266

security of the stable entropy block Bη: Txη is the transaction of the payment to the vendor,267

with η now being an address freshly sampled at random by the vendor. Assume the buyer268

has paid the correct amount to the vendor’s new address. To argue about the finality of the269

payment, i.e., the finality of Txη, we recall the strong security guarantee that Blink achieves:270

Blink allows us to define a recent, trustlessly identified, stable block. This block behaves as271

a secure checkpoint or, in other words, as a new genesis G′: it is in the stable chain of honest272

parties, i.e., it will never be reverted, and the consensus rules applied to G′ are consistent to273

the consensus rules applied to the genesis block G. We now show how to extend the Blink274

protocol to verify payments. Upon accepting a proof π and identifying G′, the client can send275

G′ to all provers, and provers start sending to the client all the blocks descending from G′.276

The client now maintains the longest chain descending from G′, essentially running an SPV277

algorithm with G′ as a starting point. When Txη is in a block that is k-deep in the longest278

chain (this will happen, at most, 3k consecutive blocks on top of G′), the client considers the279

payment final and terminates.280

With one additional round of communication, Blink can now verify payments with a281

constant-sized proof. We observe that the client latency is the same one of a standard SPV282

AFT SIB 2024

10 Blink: An Optimal Proof of Proof-of-Work

Algorithm 2 The algorithm ran by V to check the validity of the blocks in the proof. Let x be
the root of the transaction Merkle tree in a block, and s be its parent hash.

1: function ValidG (π, η)
2: (π0, π1)← π

3: if |π0| < k + 1 then
4: return False
5: end if
6: if ¬MerkleVerify(π1, η) ∨ π1.root ̸= π0[k + 1].x then
7: return False
8: end if
9: h = π0[0].s

10: for B ∈ π0 do
11: if B.s ̸= h then ▷ Ancestry failure
12: return False
13: end if
14: h = H(B)
15: if h ≥ T then ▷ Hardcoded target T, static setting
16: return False ▷ PoW failure
17: end if
18: return G = π0[0] ∨ |π0| = 2k + 1
19: end for
20: end function

Algorithm 3 The algorithm ran by the provers P ∈ P.

1: function Prover()
2: η L99 V

3: Txη L99 MakeTx(η)
4: Txη 99K Network ▷ Wait for Txη to be k-confirmed
5: π0 L99 C[−(2k + 1):] ▷ By Common Prefix, Tx ∈ C[−(2k + 1):]
6: π1 L99 MerkleProve(C[k + 1], η)
7: π ← (π0, π1)
8: π 99K V

9: end function

client, i.e., k blocks when there is no adversarial attack, and 2k when under attack. In283

Figure 9 we show the pseudocode for the Blink-based protocol for payment verification. We284

note that the Blink construction can be used out-of-the-box to verify payments in the Bitcoin285

Backbone protocol in the static difficulty setting. We refer the reader to Section 6 for variable286

difficulty and practical deployment.287

3.2 Bootstrapping via Blink288

In blockchains, there is an interplay between different types of parties: consensus nodes,289

full nodes, and clients. Consensus nodes, also called miners, receive transactions from the290

network (environment) and execute a distributed protocol that outputs a ledger, i.e., a291

finite, ordered sequence of transactions identical for all nodes. Full nodes do not participate292

in the distributed ledger protocol; instead, they receive the ledger from consensus nodes,293

execute transactions to verify their validity, and maintain the ledger. Finally, clients connect294

to full nodes to retrieve a specific state element from the ledger, e.g., an account balance.295

Bootstrapping these nodes usually requires a lot of time (from several hours to several days)296

and resources because, starting from genesis, they need to download and execute all the297

transactions in the ledger (full and consensus nodes) or verify all the blocks in the ledger298

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 11

Proof Construction

5. V samples η
$← {0, 1}λ

6. V sends η to every P ∈ P
7. P construct an entropy transaction Txη containing η and broadcast it to the blockchain network
8. As soon as a party P ∈ P has k confirmation blocks on top of the block Ḃ containing Txη, P

sends to V π consisting of Ḃ with k blocks before and k blocks after it
9. V accepts the first π it receives consisting of 2k + 1 consecutive well-formed blocks where the

middle block contains η, i.e., π[k] = Ḃ
10. Upon accepting π, V extracts the new genesis G′ := π[0] and sends G′ to all P ∈ P
11. Each P ∈ P keeps sending all the blocks descending from G′ in their chain

State Extraction

12. V maintains the longest chain C descending from G′

13. When Txη is k deep in C, V extracts the state from the block including Txη and terminates

Figure 9 Pseudocode of the payment verification with Blink

(SPV-based clients).299

In Section 3.1 we used Blink to identify a recent stable block that behaves as a new300

genesis G′ and, commencing from this block, our client started running an SPV protocol,301

i.e., the one often run by (light) clients. Blink can thus serve as an efficient bootstrapping302

protocol that allows the identification of a new stable block G′ and, from that block (e.g.,303

using the state commitment therein), runs the protocol of a consensus, full, or light node.304

In this way, nodes do not have to execute the entire transaction history or download past305

blocks but start executing only from transactions 2k blocks in the past.306

3.3 State Verification307

In this work, we demonstrated how to convince a light client about the state of a ledger,308

incurring only constant communication overhead. As specified in Section 2.1, Blink operates309

on the premise that each block embeds a constant-sized commitment to the current state310

of the ledger. Commitments come in different flavors (Merkle tree-based commitments,311

accumulators, vector commitments), and they are used to download and verify the UTXO312

set or account balances after the block, including it, has been successfully executed.313

Having a chain with state commitments enables Blink to be used to verify more than314

just payments: Blink allows to verify account balances and read the current state of on-chain315

contracts. For a discussion on chains that have state commitments and how to introduce316

them to systems like Bitcoin, see Section 6.317

3.4 Historical Transaction Verification318

While it is uncommon to verify very old transactions, it might be necessary for some319

applications to verify, e.g., a few weeks old transactions. In these cases, once Blink identifies320

the new genesis G′, one could travel back the chain block by block until hitting the block321

containing the transaction to be verified. While Blink has constant communication, this322

is a naive approach for checking past transactions that comes with a linear overhead: the323

older the transaction, the more blocks the client has to download. More advanced techniques324

called proof of ancestry, achieve better performances in proving that a block is an ancestor325

of another block: these include using Merkle Mountain Ranges (MMRs), i.e., extensions of326

AFT SIB 2024

12 Blink: An Optimal Proof of Proof-of-Work

Merkle trees that allow for efficient appends in logarithmic openings, or vector commitments327

with constant opening. It follows that Blink allows to succinctly synchronize with the current328

state of the ledger and, from there, using a proof of ancestry, to travel back the transaction329

history until verifying the desired old transaction. When verifying historical transactions, the330

communication of Blink remains constant but can be combined with a linear, logarithmic, or331

constant proof of ancestry.332

3.5 Bridging with Blink333

After more than 15 years of research and work from academia and industry alike, the334

blockchain space has grown in a variety of 100+ chains, each presenting different and unique335

features in terms of consensus, privacy, throughput, applications, and programmability. To336

leverage these diverse opportunities and to enhance users’ flexibility in the crypto world,337

light clients have recently become a pivotal component for bridges as well, allowing them to338

efficiently and securely read the state of a chain within new resource-constrained environments:339

blockchain themselves.340

Successful bridges move a high volume of transactions: ideally, at least one transaction341

per block. In this case, every block that includes a cross-chain transaction must be relayed342

by the bridge from the source to the destination chain, in an SPV-like fashion. However,343

contrarily to an SPV client, the on-chain costs of the bridge can be minimized by avoiding344

verifying blocks by default. Instead, blocks can be optimistically accepted and only verified345

on-demand, i.e., in case a dispute is raised. This is what an optimistic bridge does. We346

demonstrate how to use Blink for creating succinct fraud proofs to resolve disputes.347

Consider a PoW source blockchain CS including state commitments in its blocks and348

allowing for efficient ancestry proofs. Relayers of the bridge can optimistically relay a stable349

block B from CS to the destination blockchain CD, by submitting B along with a random350

string ηR they sampled to the smart contract, where the bridge is deployed. Should a351

challenger notice misbehavior, they have a time window to start a challenge in which they352

pinpoint the contested block B and they reveal a random string ηC to the bridge contract.353

The challenger proceeds to publish a transaction Txη on CS , which includes η := ηR ⊕ ηC354

(where ⊕ is bit-wise xor). Both parties need to contribute with a random string to prevent355

each of them from cheating, i.e., pre-mining a fake proof. The bridge contract will accept,356

from anyone, the first valid proof π containing Txη, and via ancestry proof it can verify357

whether or not B is an ancestor of the first block in π by checking the block height. If it is358

not, B is removed from the bridge contract. Honest behavior can be incentivized through359

collateral that is slashed or redistributed in case of misbehavior.360

4 Model361

4.1 Notation362

The bracket notation [n] refers to the set {1, . . . , n} for a natural number n. A[i] denotes the363

i-th element (starting from 0) of a sequence A, while negative indices like A[−i] refer to the364

i-th element from the end. A[i : j] represents the subsequence of A from index i (inclusive)365

to j (exclusive), while A[i :] and A[: j] represent the subsequences from i onwards and up to366

j, respectively. The notation |A| denotes the size of the sequence A. The symbols A ⪯ B367

and A ≺ Y indicate that A is a prefix or a strict prefix of B or Y , respectively.368

We denote with C
⋂
r :=

⋂
P ∈H CP

r the intersection of the view of all honest parties’ chains369

at round r. Similarly, we denote with C
⋃
r :=

⋃
P ∈H CP

r the union of the chains of all honest370

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 13

parties, that yields a blocktree. For simplicity, we extend our slicing notation that chops off371

the last k elements of a sequence, i.e., [: −k], to trees as well. For trees, it works as follows.372

For every leaf in a tree, select that leaf and the k − 1 preceding nodes. Then, for every373

leaf, remove all selected nodes. The slicing notation for trees will be helpful later on, when374

distinguishing between a stable chain in the view of all honest parties and a stable chain375

in the view of at least one honest party. It follows that C
⋂
r [: −k] is the intersection of the376

view of the blockchain of all honest parties at round r, pruned of the last k blocks; likewise,377

C
⋃
r [: −k] is the union of the view of the blockchain of all honest parties at round r, pruned378

of the last k blocks. In Lemma 42 (Appendix A.1), we prove that C
⋃
r [:−k] =

⋃
P ∈H CP

r [:−k].379

We say a block extends another block, if the former has the latter as ancestor and has a380

higher block height. We say a block descends from another block, if the former extends the381

latter or they are the same block. Finally, two blocks are parallel when they have the same382

height.383

4.2 Ledger Model384

We assume a synchronous network, i.e., all honest parties are guaranteed to receive messages385

sent by honest within a known delay. We consider the protocol execution to proceed in386

discrete rounds.387

▶ Definition 1 (Ledger). A ledger is a sequence of transactions.388

▶ Definition 2 (Distributed Ledger Protocol). A distributed ledger protocol is an Interactive389

Turing Machine which exposes the following methods:390

execute: Executes a single round of the protocol, during which the machine can commu-391

nicate with the network.392

write (Tx): Takes transaction Tx as input.393

read (): Outputs a ledger.394

A distributed protocol that returns a total order of the input transactions for all consensus395

nodes, satisfies two key properties: safety and liveness. The notation LP
r denotes the output396

of read () invoked on party P at the end of round r.397

▶ Definition 3 (Safety). A distributed ledger protocol is safe if:398

(Self-consistency) For any honest party P and any rounds r1 ≤ r2, it holds that LP
r1

⪯ LP
r2

.399

(View-consistency) For any honest parties P1, P2 and any round r, it holds that either400

LP1
r ⪯ LP2

r or LP2
r ⪯ LP1

r .401

▶ Definition 4 (Liveness). A distributed ledger protocol is u-live if all transactions written to402

any honest party at round r, appear in the ledgers of all honest parties by round r + u.403

The ledger uniquely defines the system’s current state. An empty ledger is equivalent to a con-404

stant genesis state, denoted as st0. To ascertain the state of a non-empty ledger, transactions405

from the ledger are sequentially applied to the state, starting from the genesis state. This406

transaction application to the existing state is encapsulated by a transition function δ. For a407

given ledger L = {tx1, . . . , txn}, the state of the system is δ(. . . δ(δ(st0, tx1), tx2) . . . , txn).408

We use the shorthand notation δ∗ to apply a sequence of transactions tx = {tx1, . . . , txn}409

to a state. Specifically, δ∗(st0, tx) = δ(. . . δ(δ(st0, tx1), tx2) . . . , txn).410

Prover-Verifier Model. A client protocol is an interactive protocol between the client,411

acting as verifier V , and a non-empty set of full nodes, acting as provers P ∈ P. We focus412

AFT SIB 2024

14 Blink: An Optimal Proof of Proof-of-Work

on a client V that bootstraps on the network for the first time and it is only aware of the413

genesis state.414

We assume that the client is honest and connects to at least one honest prover, in415

accordance with the standard non-eclipsing assumption. While honest parties adhere to416

the correct protocol execution, the adversary can execute any probabilistic polynomial-time417

algorithm.418

We can now define state security for client protocols, as originally introduced in [32].419

Assuming safety, we use L
⋃
r to denote the longest among all the ledgers kept by honest420

parties at the end of round r, and L
⋂
r to denote the shortest among them.421

▶ Definition 5 (Ledger Client State Security [32]). An interactive Prover-Verifier protocol422

Π(P, V) is state secure with safety parameter v, if the state commitment ⟨st⟩ output by V at423

the end of the protocol execution at round r satisfies safety and liveness as defined below.424

There exists a ledger L such that ⟨δ∗(st0, L)⟩ = ⟨st⟩, and ∀r′ ≥ r + v:425

Safety: L is a prefix of L
⋃
r′ .426

Liveness: L
⋂
r is a prefix of L.427

When a client gets knowledge of the state of the ledger without downloading the entire428

ledger or executing all transactions, it is a light client. Ideally, a light client learns the desired429

state element by downloading asymptotically less data than a full node. We measure the430

performance of a client protocol by defining the communication cost for the verifier. In other431

words, for a specific client protocol we measure the data received by the verifier in the proof432

construction (π) phase.433

▶ Definition 6 (Client Communication Cost). We define cost(E , V) to be the communication434

cost (in bits) of an execution E of a protocol Π(P, V) for party V .435

We say that a client protocol has optimal communication cost if cost(E , V) = O(1), i.e., the436

verifier receives only a constant amount of data. In particular, we will show later that Blink437

is a light client with optimal communication cost cost(Blink) = O(k) = O(1), where k is the438

safety security parameter that is constant for a protocol execution [18].439

▶ Definition 7 (Optimal Proof-of Proof-of-Work Protocol (OPoPoW)). A light client protocol440

is an Optimal Proof-of Proof-of-Work protocol when it is secure (Definition 5) and has441

optimal communication cost (Definition 6).442

4.3 PoW Blockchain Model443

A blockchain protocol is a distributed ledger protocol that operates typically as follows:444

Consensus nodes receive and broadcast chains composed of blocks. Each node P maintains445

a view of the blockchain, denoted by CP , which invariably starts with the genesis block446

G. Nodes verify these chains by ensuring they comply with the validity and consensus447

rules. These chains include fixed-size transactions arranged in a specific order. Every node448

interprets its chain to produce a transaction sequence, i.e., to output its ledger. Moreover, a449

consensus node receives new, unconfirmed transactions from the network, and attempts to450

add them to its ledger by proposing a new block that includes them. The nodes’ local views451

the ledger can vary from node to node because of the network latency. Honest nodes adhere452

to the consensus protocol, while adversarial nodes may diverge from it. Nevertheless, under453

specific assumptions, a blockchain protocol may guarantee that the local chains of different454

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 15

parties satisfy the two key properties of ledgers, namely safety and liveness, albeit typically455

in a probabilistic manner.456

To model the proof-of-work setting, the q-bounded synchronous setting defined in [18] can457

be leveraged. The protocol is analyzed in the static model, where the number of consensus458

nodes n remains fixed throughout the protocol execution, albeit not known to the nodes459

themselves. Furthermore, each of them is assumed to have an equal computational power460

(flat model). The protocol proceeds in synchronous communication rounds. We highlight that461

the static model implies static difficulty, i.e., the PoW difficulty remains the same throughout462

the protocol execution. The limited capability of the nodes to generate PoW solutions is463

captured by their restricted access to the hash function H(·) modeled as a Random Oracle;464

each node is allowed q queries per round. The adversary controls up to t < n
2 nodes, meaning465

they are allowed t · q queries per round. The adversary can insert messages, manipulate466

their order, and launch Sybil attacks, creating seemingly honest messages. However, the467

adversary cannot censor honest parties’ messages, ensuring that all honest parties receive468

honestly broadcast messages.469

The Bitcoin Backbone model [18] identifies three security properties of a blockchain:470

common prefix, chain quality, and chain growth. Informally, common prefix dictates that at471

any point in time, any two honest parties’ chains after pruning the last k blocks are either472

the same or one is a prefix of the other. Chain growth expresses that the blockchain makes473

progress at least at the pace at which the honest parties produce blocks. Finally, chain474

quality captures the ratio of honestly produced blocks in the system in any long enough475

chunk of the chain. The formal definitions can be found in Appendix A.1. A blockchain476

protocol satisfying common prefix, chain quality, and chain growth also maintains a secure477

ledger, as per Definition 3 and Definition 4, under the so-called k-deep confirmation rule.478

This rule states that all nodes consider a block safe when it is part of their local chain pruned479

by the last k blocks. As expected, both safety and liveness hold probabilistically.480

Chain Client Security. As a blockchain defines a specific distributed ledger protocol, full481

nodes, and clients function as described above. Inheriting the same interactive model, we482

now define the client security for blockchain protocols. To do so, we first define the notion of483

admissible blocks as a stepping stone.484

▶ Definition 8 ((u, k)-Admissible Block at r). Parameterized by u ∈ N and k ∈ N, we call485

admissible block at r any block B observed at round r fulfilling the following properties:486

Safety: B ∈ C
⋃
r+u[: −k]487

Liveness: B /∈ C
⋂
r [: −k]488

In our definition of (u, k)-admissible blocks at r, the parameters u and k are free paramet-489

ers. In our proofs, it turns out that this admissibility holds if u is the “wait time” parameter490

of liveness, and k is the “depth” parameter of safety/persistence of [18]. Thus, for readability491

we omit (u, k) and mean admissibility in the round in which the client terminates, if not492

stated otherwise.493

▶ Definition 9 (Chain Client Security). An interactive Prover-Verifier protocol (P, V) for494

clients is secure if any block B output by the Verifier at the end of the protocol execution at495

round r∗ is admissible for some round r ≤ r∗.496

In other words, the client accepts a block B at round r∗, if for some round r ≤ r∗ the497

following holds: B is seen as stable by at least one honest party at round r + u (safety), and498

B is not yet seen by all parties at round r (liveness).499

AFT SIB 2024

16 Blink: An Optimal Proof of Proof-of-Work

State Commitments. We consider PoW blockchains in which block headers include state500

commitments, denoted by ⟨st⟩. State commitments are a succinct representation of the state501

of the ledger, and they are assumed to be of constant size. In the account model of, e.g.,502

Ethereum, an example of state commitment is the Merkle root of account balances; in the503

UTXO model of, e.g., Bitcoin, an example is the Merkle root of the Sparse Merkle Tree504

where the value of each leaf corresponds to a UTXO of the UTXO set [29, 32]. Equipped505

with this functionality, client protocols satisfying Definition 9 also satisfy Definition 5. We506

stress however that state commitments are necessary in Blink only for the extraction of the507

ledger’s state but not for the secure proof creation.508

5 Analysis509

In this section, we present the main theorems and formal analysis of our paper. We start by510

giving a high-level overview on the proof strategy, followed by the formal proofs. Due to511

space constraints, some preliminary definitions and lemmas used in the proofs are deferred512

to Appendix A.513

Analysis Overview. The main theorem we prove in this paper is as follows.514

▶ Theorem 10. Blink achieves ledger client state security (Definition 5).515

Towards proving Theorem 10, we start proving the admissibility of π[0]. We identify516

a special type of block, which we call convergence event at a round r (Definition 49). A517

convergence event is an honestly produced block that has (by round r) no parallel block518

that is acceptable. We call a block an acceptable block (Definition 44) if it is valid and there519

is at least one honest party who might potentially switch to a chain including it. These520

convergence event blocks have some interesting properties. In particular, (i) all acceptable521

blocks at some round r need to descend from all convergence events at round r with smaller522

block height (Lemma 52); (ii) a block that is a convergence event B̃ in a round in which523

there exists a valid block B̂ with a height of at least k more than B̃ (even if B̂ is only known524

to the adversary), B̃ is destined to become stable for all honest parties (Lemma 53); (iii)525

the nearest ancestral convergence event to any block is always fewer than k blocks away526

(Theorem 54). Note that these desirable properties hold regardless of our construction, and527

might be of independent interest.528

Towards proving the safety of π[0], we show that π[k :] always extends a so-called anchor529

block B̃, which is the nearest convergence event at the time that π is found and sent to530

the client (Theorem 16). Since π[k] is fewer than k blocks away from its nearest ancestral531

convergence event (Theorem 54), we know that B̃ ∈ π. Also, B̃ will become stable (Lemma 53),532

and thus π[0] is safe. Intuitively, liveness holds since π[k] is fresh as it contains the newly533

sampled η and π[0] is exactly k blocks away and thus also new; we formally prove this in534

Theorem 21.535

Towards chain client safety, we start arguing about the first proof π of length 2k + 1536

the client accepts at round r∗ + 1, with π[k] containing η. As a first step, we say that π537

must extend an anchor block B̃ (Anchor, Theorem 16). In turn, B̃ extends a block B′ which538

is stable for all honest parties already at round r0. Intuitively, this holds because when η539

is broadcast, honest parties will only produce blocks extending B̃. As a result of honest540

majority, a proof extending the anchor is found first.541

Liveness and safety yield that π[0] is an admissible block at round r∗ (Theorem 21) and542

we prove that the longest chain rule applied to the genesis block is consistent with the longest543

chain rule applied to π[0] (New Genesis, Lemma 22). Finally, we show that, eventually, all544

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 17

honest parties will have an admissible block including Txη and that such a block is close to545

π[0]. It follows that running a (succinct) SPV algorithm on top of G′ = π[0] will guarantee546

to Blink admissibility of a block Bη including Txη, when Bη is buried k blocks deep in the547

longest chain. We prove that Txη becomes stable for all honest parties (Lemma 26) after u548

rounds and that its distance to G′ is upper-bounded by 3k blocks (Lemma 27).549

To conclude, we prove by reduction that any client construction that fulfilling the chain550

client security definition, having state commitments, also fulfills the ledger client state security551

definition (Corollary 24).552

▶ Theorem 11. Blink has optimal communication cost, i.e., O(k).553

The communication cost (Definition 6) measures the bits sent/received by V during554

an execution E of a protocol Π(P, V). For each P , to which V is connected, there is the555

following overhead. To identify the new genesis block, V sends η which has a size of O(1)556

and receives (at most) one proof consisting of 2k + 1 blocks for each P ∈ P. This makes557

for a total size of O(k). To predicate security of the block including η, the client sends the558

new genesis G′ to all full nodes and it keeps receiving blocks descending from G′, until the559

entropy block is k deep in the longest chain - this will happen after, at most, 3k blocks from560

G′. This makes for a total size of O(k).561

Note that light client constructions connect to a subset of all full nodes. Depending562

on how many nodes the light client connects to, the overhead increases. This is true for563

other light client constructions as well. Regardless, the communication cost of Blink is O(1),564

i.e., constant in the chain length C. From Theorems 10 and 11 it follows, that Blink is an565

Optimal Proof-of Proof-of-Work Protocol (OPoPoW, Definition 7).566

5.1 Safety and Liveness of Blink567

We model time to proceed in discrete rounds. Our network model stipulates that messages568

sent in a round r reach the recipient in round r + 1. Like other nodes, the client can send569

and receive messages.570

Consider a client booting up at round r0 − 1 and broadcasting the entropy η. η is received571

by the blockchain nodes at round r0. We say the proof π is generated at round r∗ and572

received by the client at round r∗ + 1. Upon receiving the proof, the client sends π[0] to full573

nodes and waits for Txη to become stable. Finally, the client terminates when Txη is stable574

in the chain of honest parties, i.e., at round r∗∗ ≥ r∗ + 3.575

Should the blockchain have fewer than k blocks at round r0, a proof with fewer than k576

blocks before η is valid if its first block is the genesis block. However, if the chain is shorter577

than k blocks, the chain itself is already succinct and a light client is not needed.578

Consider the blocktree of the execution at round r0. We define B′ ∈ C
⋂
r0 as the block579

with the greatest height which is a convergence event at r0.580

▶ Lemma 12. B′ exists.581

Proof. The genesis block satisfies the definition of B′. ◀582

We denote the round in which B′ was produced as r′, with r′ < r0. From Lemma 53, we583

know that all honest blocks produced after r′ extend B′.584

Now, consider the blocktree of the execution at round r∗. We define B̃ as the block with585

the greatest height that descends from B′, was mined before r0, and it is a convergence event586

at r∗. Because this block is similar to the blocks named B̃ in Theorems 54 and 55, we re-use587

the name B̃. We say B̃ is produced at round r̃, with r′ ≤ r̃ < r0. We define S̃ := {r̃, . . . , r∗}.588

AFT SIB 2024

18 Blink: An Optimal Proof of Proof-of-Work

▶ Lemma 13. B̃ exists.589

Proof. B′ satisfies the definition of B̃. ◀590

▶ Lemma 14. Acceptable blocks produced in S̃ descend from B̃.591

Proof. This follows directly from Lemmas 51 and 52 (Appendix A.2).592

◀593

As a consequence of Lemma 14 and Observation 46, all honest blocks produced in S̃594

descend from B̃.595

▶ Lemma 15. All honest blocks produced in uniquely successful rounds within {r̃ + 1, . . . ,596

r0} have a parallel acceptable (by r∗) adversarial block.597

Proof. Because of the maximality (in terms of height) of B̃, all blocks extending B̃ and mined598

in uniquely successful rounds before r0 have a parallel, acceptable adversarial block. ◀599

For a set of consecutive rounds S, let X(S) be honest queries, i.e., rounds in which at least600

one honest node found a block, Y (S) be uniquely successful honest queries, i.e., rounds in601

which exactly one honest node found a block, and Z(S) be adversarial queries, i.e., rounds in602

which the adversary found a block. We denote with |X(S)|, |Y (S)|, and |Z(S)| the number of603

successful queries in X(S), Y (S), and Z(S). These sets are defined in [18] or Appendix A.1.604

▶ Theorem 16 (Anchor). In a typical execution, the block with η and its k subsequent blocks605

of the proof π that the client accepts, i.e., π[k :], always extend B̃.606

Proof. Let Y (S̃) be the set of honest uniquely successful queries within S̃, and Z(S̃) be607

the set of successful adversarial queries within S̃. Consider Figure 10 and let us define the608

following disjoint sets, Y1, Y2 and Z1, Z2, where Y1 ∪ Y2 = Y (S̃) and Z1 ∪ Z2 = Z(S̃).609

1. The queries of Z1 produce blocks that extend B̃.610

2. The queries of Z2 produce blocks that do not extend B̃.611

3. The queries of Y1 produce blocks parallel to (at least) one of the blocks in Z1 acceptable612

at r∗.613

4. The queries of Y2 produce blocks not parallel to any of the blocks in Z1 acceptable at r∗.614

▷ Claim 17. If |Y2| = k + 1, at round r∗ + 1 the client has received a proof π with the blocks615

π[k :] extending B̃.616

This is true because in Y2 there are no successful adversarial queries in S̃ producing blocks617

extending B̃ and having parallel blocks. Furthermore, by definition of B̃ and by causality,618

there cannot be successful adversarial queries outside of S̃ producing blocks extending B̃.619

Yet, there can exist successful adversarial queries in Z2 which produce blocks not extending620

B̃.621

▷ Claim 18. After r0, honest parties do not extend blocks in Z2.622

Blocks in Z2 do not extend B̃, and thus are not acceptable by r∗. Therefore honest parties623

do not extend them within S̃.624

After r0, honest nodes will include η in a block, if η was not included before. It follows625

that the block in Y2 with the smallest height descends from a block including η. The k blocks626

produced by the remaining queries in Y2 extend the block with η by one block each, as they627

are uniquely successful and there are no parallel, adversarial acceptable by r∗ blocks.628

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 19

B̃

r̃ r0 r∗

?

S̃

Y1
(
S̃

)
Y2

(
S̃

)

⊆ Z2
(
S̃

)
Z1

(
S̃

)
η

η

η

η

η

time

. . .

Figure 10 This figure illustrates the proof of Theorem 16.

▷ Claim 19. Independently of k, the block in Y2 with the greatest height has all other blocks629

of Y2 as ancestors.630

Towards a contradiction of Theorem 16, suppose that at round r∗ + 1 the client accepts a631

proof π which is generated at round r∗ and where π[k :] does not extend B̃. For the client to632

receive such a proof, the number of blocks produced between r0 and r∗ not extending B̃, thus633

in Z2, has to be larger than or equal to k + 1. Therefore, also |Z2| ≥ |Y2|. |Y2| can grow at634

most of 1 per round: if |Y2| was of k + 1 in a previous round rp < r∗, the light client would635

have received the proof in rp + 1, contradicting the minimality of r∗. Now we count these636

sets. We have that |Z| = |Z1| + |Z2| and |Y | = |Y1| + |Y2|. By definition of Y1, we know that637

|Y1| ≤ |Z1|. It follows, that |Z| = |Z1| + |Z2| ≥ |Y1| + |Y2| = |Y |. However, from Lemma 34638

we know that |S̃| ≥ λ and thus, typicality bounds apply to this set of rounds. This means639

that |Z| < |Y |, which is a contradiction. This concludes the proof of Theorem 16. ◀640

▶ Lemma 20. B̃ ∈ π.641

Proof. Because the block containing η, π[k] or Ḃ, which was produced in round ṙ, is642

acceptable and has a height larger than any block that was honestly produced before it,643

we know from Theorem 55 that the nearest convergence event at ṙ has a height difference644

smaller than k blocks. ◀645

▶ Theorem 21. In a typical execution, the first element π[0] in the proof π accepted by Blink646

client at round r∗ is an admissible block (cf. Definition 8).647

Proof. (Safety) From Lemma 20 we know that π includes B̃. From Theorem 54, we know648

that B̃ is safe (i.e., B̃ ∈ C
⋃
r0+u[: −k]). Since π[0] is either B̃ or an ancestor of B̃, π[0] is safe as649

well, i.e., π[0] ∈ C
⋃
r0+u[: −k] .650

(Liveness) Let l′ be the height of B′. Define B′′ := C
⋂
r0 [−k − 1], and denote its height651

with height l′′. Since B′ is by definition either B′′ (if the latter is uniquely successful and has652

no adversarial blocks at the same height by round r0) or else an earlier block, it follows that653

l′′ ≥ l′.654

AFT SIB 2024

20 Blink: An Optimal Proof of Proof-of-Work

At round r0, honest users each have a local chain with height of at least l′′ + k, because655

B′′ is stable for all honest parties at round r0. Since π[k] includes η it has to be mined after656

r0, which is the round in which η was released. This means, for the height lk of π[k], it holds657

that lk > l′′ + k.658

As π[0], with height l0, is k blocks before π[k], it holds that l0 = lk − k. Therefore659

l0 + k > l′′ + k, which means that l0 > l′′. However, since B′′ was the last block in the stable660

intersection at round r0, this implies π[0] ̸∈ C
⋂
r0 [: −k].661

Therefore, at round r∗ when the client accepts the a proof π, π[0] is an admissible662

block. ◀663

We observe that, after r0, every honest chain tip descends from π[0]. We refer to π[0] as664

new genesis block G′.665

▶ Lemma 22 (New Genesis). The longest chain rule applied to the genesis block G is consistent666

with the longest chain rule applied to G′, with G′ being an admissible block.667

Proof. Suppose there exists a longest chain that contains G but does not contain G′. From668

admissible safety, we know that G′ is stable for at least one honest user U , i.e., G′ ∈ C
⋂
r [: −k].669

Since the longest chain does not contain G′, honest users will adopt it in the next round,670

including the user U who has reported G′ as stable. This violates common prefix. ◀671

▶ Corollary 23 (Chain Client Security for Blink). Blink is chain client secure according to672

Definition 9.673

Given a client protocol Π which outputs a block B, one can build another protocol Π′
674

that runs Π and reports the state commitment in B.2675

▶ Corollary 24. For any client protocol Π that is chain client secure, the corresponding676

protocol Π′ constructed in the above manner is ledger client state secure (Definition 5).677

This follows from a simple reduction since Π′ merely reports the state commitment of B. If678

the state commitment was such that Π′ is not ledger client state secure, the corresponding B679

cannot have been admissible. This concludes the proof of the main theorem Theorem 10,680

which is stated again here:681

▶ Theorem 25 (Ledger Client State Security for Blink). Blink is ledger client state secure682

with the safety parameter v (Definition 5) being the wait time parameter u of liveness683

(Definition 8).684

5.2 Safety and Liveness of Bη := π[k]685

We now consider the case where Blink is used to verify a payment (or anything else that is686

in Bη), and we show that the corresponding proof size remains constant. We recall that in687

this use-case, after adopting G′ and sending it to the provers, the Blink client maintains the688

longest chain descending from G′. We now show that the entropy block will be eventually689

stable for all honest parties at most 3k consecutive blocks away from G′.690

▶ Lemma 26 (Stability of Txη). In a typical execution, a block Bη including Txη becomes691

stable for all honest parties at most at round r0 + u, i.e., Bη ∈ C
⋂
r0+u[: −k].692

2For instance, this can easily be achieved for any blockchain protocol that has state commitments.

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 21

Proof. It follows from the ledger liveness in Definition 4. ◀693

▶ Lemma 27 (Vicinity of Txη). In a typical execution, a block Bη including Txη becomes694

stable for all honest parties at most 3k consecutive blocks away from G′.695

Proof. Let rg be the round at which the new genesis block is produced. By construction, k696

consecutive blocks are produced between rg and r0. By Lemma 26, the entropy transaction697

Txη becomes stable for all honest parties at most at rs = r0 + u. By the liveness of the chain698

(chain quality and chain growth), at rs, at most 2k − 1 consecutive blocks are produced699

between G′ and Bη (Corollary 38), and Txη is at least k blocks deep in every honest party’s700

chain. It follows that after at most 3k consecutive blocks are produced, Bη is stable for all701

honest parties. ◀702

6 Practicality, Limitations, and Extensions of Blink703

State Commitments. In Section 3, we presented an application of Blink to build a light704

client that can be convinced about the current state of a ledger with optimal communication705

cost. This way, we enable the confirmation of historical transactions in the ledger, tracing706

back to its genesis. However, this application operates on the premise that each block embeds707

a state commitment to the current ledger state. While several blockchains like ZCash, Nimiq,708

and Ethereum PoW uphold this premise, the most notable PoW blockchain, Bitcoin, does not709

incorporate state commitments in its block headers, even though there have been proposals710

[16]. NIPoPoWs, i.e., the polylogarithmic clients described in [25, 12], have the potential to711

be added retroactively via a velvet fork [27, 35]. The idea of introducing state commitments712

for Blink via velvet fork is appealing, however, its practical application is still undetermined.713

Multiple Clients. Blink addresses the problem of one light client connecting to multiple714

full nodes and asking for the current state of the chain. In case we have multiple such requests,715

it is possible to compress the different entropy transactions using standard techniques. For716

example, multiple random strings can be ordered in a Merkle tree, and only the Merkle root717

is published on-chain within the entropy transaction. For this to be safe, each light client718

instance needs to have a Merkle proof of inclusion of its randomness in the tree.719

Entropy Transaction Fees. Blink incurs on-chain fees which can be paid by light clients720

within entropy transactions. These fees can be paid in the form, for instance, of an anyone-721

can-spend output. The way the light client pays the on-chain cost for the entropy transaction722

can also be addressed in other ways on the application level: For instance, dedicated contracts723

or untrusted services can be designed such that clients’ costs are mitigated.724

Interactivity. Blink demands one round of interactivity between the client and the full725

nodes, unlike its predecessors that operate non-interactively [12, 25, 22]. This is the trade-off726

we incur for achieving a constant-sized proof instead of a polylogarithmic one as in [12, 25, 22].727

We could remove the interactivity by introducing additional assumptions, for example: (i) a728

trusted committee service operates the client, similarly to the service provided by Chainlink729

for oracles, (ii) a random beacon acts as global entropy source and provides a service for730

Blink clients. However, both solutions come with drawbacks, i.e., centralization or a strong731

non-practical cryptographic primitive, respectively. It remains an open question whether732

designing a non-interactive light client with constant communication is possible without733

extra assumptions.734

Variable Difficulty. Blink is analyzed in the static setting [18], i.e., the PoW difficulty735

remains the same throughout the protocol execution. In practice, Bitcoin uses a variable736

AFT SIB 2024

22 Blink: An Optimal Proof of Proof-of-Work

difficulty recalculation. Blink can still be used safely if we assume that parties agree on a737

difficulty beforehand, look it up on a trusted service (e.g., some blockchain explorer), or make738

some assumptions on the computational power of a potential adversary. Ideally, however, we739

can design a construction that is secure in the variable difficulty setting [17]. This challenge740

can be overcome by utilizing difficulty balloons to measure the current difficulty in a succinct741

fashion [37]. This approach, which is not unlike ours, utilizes entropy proofs to estimate742

(within some error) the current PoW difficulty of the network, by which point we can apply743

Blink as is. However, we anticipate that such an approach would only be secure under a744

weaker adversary that controls up to 1/3 of the computational power of the system. To745

provide an intuition behind this threshold, consider an adversary t < 1/2 that acts as follows:746

while measuring the difficulty, the adversary can abstain, thus creating a false sense of how747

many blocks she can produce in any given set of rounds. Thereby, she can take advantage748

of this false estimation to mine privately the required proof thereby violating the safety of749

Blink. We estimate that this adversarial advantage may be mitigated if honest nodes can750

produce double as many PoWs as the adversary.751

Another approach would be to modify our light client construction by changing the752

selection rule for the proof: now the client would choose the proof with the most work after753

the intersection of all proofs within a given time window. We conjecture such an approach754

may alleviate the possible attack vectors of a minority adversary (t < 1/2), and we plan to755

explore it in future work.756

7 Evaluation757

We evaluate the feasibility of Blink by measuring its proof size and its waiting time for758

Bitcoin. A Proof-of-Concept implementation of Blink can be found at [8] and all entropy759

transactions broadcast during this evaluation can be inspected at this Bitcoin address [1].760

Our client uses the python bitcoin-utils library [7] to create the entropy transactions, and761

the python request HTTP library [9] to communicate via RPC APIs [6].762

Experimental Setup. We deployed two mainnet Bitcoin full nodes running Bitcoin763

Core 25.0 and acting as untrusted provers: one was operated in-house on our own hardware764

(Central Europe) and the other one on a Vultr virtual machine (UK). We use two different765

deployments to emulate more realistic network conditions. The nodes maintain the entire766

history of all transactions of the ledger and they allow us to broadcast transactions to the767

Bitcoin network as well as to retrieve blocks, transactions, and Merkle proofs.768

We ran our custom implementation client on commodity hardware. The client begins769

by sampling uniformly at random a 160-bit string η and creating the entropy transaction770

Txη by placing η in an OP_RETURN output. The size of Txη is 222 bytes. Then, the client771

connects to the two Bitcoin full nodes, broadcasts Txη, and waits for it to be k-confirmed772

(we set k = 6 according to Bitcoin folklore). When one of the two full nodes reports Txη773

k-deep, the client downloads and verifies the Blink proof π of size 2k + 1 block headers, i.e.,774

it checks blocks’ parent-child relation and the PoW inequality.775

Proof Size. We measure all the data received by the client from the full node that first776

reports Txη with k confirmations. This data amounts to 7728 bytes (7360 for π0, and 368 for777

π1, Algorithm 1).778

The 7728 bytes of network data transmission required is due to the use of the inefficient779

JSON format and to the available standard RPC endpoints of the bitcoind full node. Using780

an optimized data transmission that avoids superfluous data, the total amount of data781

transmitted over the network can be brought down to 1646 bytes per prover connection (1040782

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 23

Full SPV[29] KLS[22], NIPoPoW [25], FlyClient[12] ZK ZeroSync Blink
node Mining LogSpace[24] Client [30]

684GB 67.3MB 10KB ∼5KB 197KB 1.6KB

Table 2 Comparison of light client solutions for Bitcoin mainnet at height 841368, using the
parameter k = 6

bytes for the 13 block headers of 80 bytes each, 384 bytes for the Merkle inclusion proof783

consisting of 12 sibling SHA256 hashes of 256 bits each, and 222 bytes for the transaction784

Txη). In Table 2, for height 841368, we compare this to a full node that requires 684GB, an785

SPV client that requires 67.3MB, NIPoPoW and FlyClient clients that require 10.0KB and786

∼5KB, respectively, and to a PoW ZK-STARK-based client (ZeroSync[30]) that requires787

197KB. We note that the differences between these clients will be more pronounced as the788

blockchain grows. We further note that proving Bitcoin’s state with ZeroSync costs 4k USD789

(one-time cost), whereas Blink only incurs the cost of running a full node, e.g., ∼ 15 USD a790

day.791

Waiting Time. We measure the time it takes the client algorithm to run, averaging it over792

10 runs. We broadcast the entropy transaction with a high-priority fee, which allows Txη to793

be included in the next 1 or 2 blocks. The average waiting time of the client to accept a794

proof is 59 minutes, with a standard deviation of 17 minutes. This is in accordance with the795

Bitcoin folklore belief of 6 blocks per hour. Any node that waits for 6 confirmations incurs796

the same waiting time, regardless of whether it is a full node or a light client. However, full797

nodes and SPV clients need to download a linear amount of data in the system’s lifetime,798

while Blink requires only constant data in the chain’s length to be downloaded.799

8 Conclusion800

This work presents Blink, the first Optimal Proof of Proof-of-Work client with constant801

communication complexity and without trusted setup. Blink allows to securely identify a802

state of the ledger which is safe and live by solely downloading a proof of 2k + 1 consecutive803

blocks. We showcase how Blink can be leveraged in several different applications, ranging804

from verification of payments and state verification to bootstrapping and bridging. We prove805

Blink secure in the Bitcoin Backbone model against an adversary with minority computational806

power. Finally, we implemented Blink to verify its feasibility and we measured its proof size807

(experimental 7.7KB, 1.6 KB theoretical) and waiting time (59 ± 17 minutes).808

Acknowledgments809

The authors thank Joachim Neu and Kostis Karantias for the helpful discussions in the early810

phase of the work. The work was partially supported by CoBloX Labs, by the European811

Research Council (ERC) under the European Union’s Horizon 2020 research (grant agreement812

771527-BROWSEC), by the Austrian Science Fund (FWF) through the SFB SpyCode project813

F8510-N and F8512-N, and the project CoRaF (grant agreement ESP 68-N), by the Austrian814

Federal Ministry for Digital and Economic Affairs, the National Foundation for Research,815

Technology and Development and the Christian Doppler Research Association through the816

Christian Doppler Laboratory Blockchain Technologies for the Internet of Things (CDL-BOT),817

and by the WWTF through the project 10.47379/ICT22045.818

AFT SIB 2024

24 Blink: An Optimal Proof of Proof-of-Work

References819

1 Bitcoin 137WhkasQG5zE1zpHZZijkGkSiEW2mo4qy Address . https://blockstream.info/820

address/137WhkasQG5zE1zpHZZijkGkSiEW2mo4qy.821

2 How to validate Bitcoin payments in Ethereum (for only 700k gas!), 2018. https://medium.com/822

summa-technology/cross-chain-auction-technical-f16710bfe69f.823

3 Merkle Mountain Ranges, 2018. https://github.com/opentimestamps/opentimestamps-824

server/blob/master/doc/merkle-mountain-range.md.825

4 Merkle Mountain Ranges (MMR), 2018. https://docs.grin.mw/wiki/chain-state/merkle-826

mountain-range/.827

5 Mina docs, 2023. https://docs.minaprotocol.com/about-mina.828

6 Bitcoin RPC APIs, Chain Query, 2024. https://chainquery.com/bitcoin-cli.829

7 Bitcoin utils, 2024. https://pypi.org/project/bitcoin-utils/.830

8 OPoPoW Blink Client Implementation, 2024. https://anonymous.4open.science/r/OPoPoW-831

Blink-Client/README.md.832

9 Python Request Library, 2024. https://pypi.org/project/requests/.833

10 Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros. Proofs of proof-of-834

stake with sublinear complexity, 2023. arXiv:2209.08673.835

11 Joseph Bonneau, Izaak Meckler, Vanishree Rao, and Evan Shapiro. Coda: Decentralized836

cryptocurrency at scale, 2020. https://eprint.iacr.org/2020/352.pdf.837

12 Benedikt Bünz, Lucianna Kiffer, Loi Luu, and Mahdi Zamani. Flyclient: Super-light clients838

for cryptocurrencies. In 2020 IEEE Symposium on Security and Privacy (SP), pages 928–946,839

2020. doi:10.1109/SP40000.2020.00049.840

13 Dario Catalano and Dario Fiore. Vector commitments and their applications. In Public-Key841

Cryptography – PKC 2013. Springer Berlin Heidelberg, 2013.842

14 Panagiotis Chatzigiannis, Foteini Baldimtsi, and Konstantinos Chalkias. Sok: Blockchain light843

clients. In IACR Cryptology ePrint Archive, 2021. URL: https://api.semanticscholar.org/844

CorpusID:245908572.845

15 Stelios Daveas, Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. A Gas-Efficient846

Superlight Bitcoin Client in Solidity. In Proceedings of the 2nd ACM Conference on Advances847

in Financial Technologies, pages 132–144, 2020.848

16 Thaddeus Dryja. Utreexo: A dynamic hash-based accumulator optimized for the Bitcoin849

UTXO set. 2019. URL: https://eprint.iacr.org/2019/611.pdf.850

17 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with chains851

of variable difficulty. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology –852

CRYPTO 2017. Springer International Publishing, 2017.853

18 Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol:854

Analysis and applications. In Journal of the ACM (to appear), 2024.855

19 Peter Gaži, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. Cryptology856

ePrint Archive, Paper 2018/1239, 2018. https://eprint.iacr.org/2018/1239. URL: https:857

//eprint.iacr.org/2018/1239.858

20 Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus859

Schofnegger. Poseidon: A new hash function for zero-knowledge proof systems. In Mi-860

chael D. Bailey and Rachel Greenstadt, editors, 30th USENIX Security Symposium, USENIX861

Security 2021, August 11-13, 2021, pages 519–535. USENIX Association, 2021. URL:862

https://www.usenix.org/conference/usenixsecurity21/presentation/grassi.863

21 Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. Compact storage of superblocks for864

nipopow applications. In Panos Pardalos, Ilias Kotsireas, Yike Guo, and William Knottenbelt,865

editors, Mathematical Research for Blockchain Economy. Springer International Publishing,866

2020.867

22 Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. Proofs of proofs868

of work with sublinear complexity. In Jeremy Clark, Sarah Meiklejohn, Peter Y.A. Ryan,869

https://blockstream.info/address/137WhkasQG5zE1zpHZZijkGkSiEW2mo4qy
https://blockstream.info/address/137WhkasQG5zE1zpHZZijkGkSiEW2mo4qy
https://blockstream.info/address/137WhkasQG5zE1zpHZZijkGkSiEW2mo4qy
https://medium.com/summa-technology/cross-chain-auction-technical-f16710bfe69f
https://medium.com/summa-technology/cross-chain-auction-technical-f16710bfe69f
https://medium.com/summa-technology/cross-chain-auction-technical-f16710bfe69f
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://docs.grin.mw/wiki/chain-state/merkle-mountain-range/
https://docs.minaprotocol.com/about-mina
https://chainquery.com/bitcoin-cli
https://pypi.org/project/bitcoin-utils/
https://anonymous.4open.science/r/OPoPoW-Blink-Client/README.md
https://anonymous.4open.science/r/OPoPoW-Blink-Client/README.md
https://anonymous.4open.science/r/OPoPoW-Blink-Client/README.md
https://pypi.org/project/requests/
https://arxiv.org/abs/2209.08673
https://doi.org/10.1109/SP40000.2020.00049
https://api.semanticscholar.org/CorpusID:245908572
https://api.semanticscholar.org/CorpusID:245908572
https://api.semanticscholar.org/CorpusID:245908572
https://eprint.iacr.org/2019/611.pdf
https://eprint.iacr.org/2018/1239
https://eprint.iacr.org/2018/1239
https://eprint.iacr.org/2018/1239
https://eprint.iacr.org/2018/1239
https://www.usenix.org/conference/usenixsecurity21/presentation/grassi

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 25

Dan Wallach, Michael Brenner, and Kurt Rohloff, editors, Financial Cryptography and Data870

Security. Springer Berlin Heidelberg, 2016.871

23 Aggelos Kiayias, Nikos Leonardos, and Dionysis Zindros. Mining in logarithmic space. In872

CCS, pages 3487–3501. ACM, 2021.873

24 Aggelos Kiayias, Nikos Leonardos, and Dionysis Zindros. Mining in Logarithmic Space.874

CCS ’21, New York, NY, USA, 2021. Association for Computing Machinery. doi:10.1145/875

3460120.3484784.876

25 Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-of-work.877

In Joseph Bonneau and Nadia Heninger, editors, Financial Cryptography and Data Security.878

Springer International Publishing, 2020.879

26 Aggelos Kiayias, Andrianna Polydouri, and Dionysis Zindros. The velvet path to superlight880

blockchain clients. In Proceedings of the 3rd ACM Conference on Advances in Financial881

Technologies, pages 205–218, 2021.882

27 Aggelos Kiayias, Andrianna Polydouri, and Dionysis Zindros. The velvet path to superlight883

blockchain clients. In Proceedings of the 3rd ACM Conference on Advances in Financial884

Technologies, AFT ’21, New York, NY, USA, 2021. Association for Computing Machinery.885

doi:10.1145/3479722.3480999.886

28 Aggelos Kiayias and Dionysis Zindros. Proof-of-work sidechains. In IACR Cryptology ePrint887

Archive, 2019. URL: https://api.semanticscholar.org/CorpusID:53243925.888

29 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009. http://bitcoin.org/889

bitcoin.pdf.890

30 Linus Robin, George Lukas, Milson Andrew, and Steffens Tino. Zerosync - stark proofs for891

bitcoin, 2024. https://github.com/ZeroSync/header_chain.892

31 Giulia Scaffino, Lukas Aumayr, Zeta Avarikioti, and Matteo Maffei. Glimpse: On-demand893

PoW light client with constant-size storage for DeFi. In Joseph A. Calandrino and Carmela894

Troncoso, editors, 32nd USENIX Security Symposium, USENIX Security 2023, Anaheim,895

CA, USA, August 9-11, 2023. USENIX Association, 2023. URL: https://www.usenix.org/896

conference/usenixsecurity23/presentation/scaffino.897

32 Ertem Nusret Tas, Dionysis Zindros, Lei Yang, and David Tse. Light clients for lazy blockchains.898

Cryptology ePrint Archive, Paper 2022/384, 2022. URL: https://eprint.iacr.org/2022/384.899

33 Psi Vesely, Kobi Gurkan, Michael Straka, Ariel Gabizon, Philipp Jovanovic, Georgios Konstan-900

topoulos, Asa Oines, Marek Olszewski, and Eran Tromer. Plumo: An Ultralight Blockchain901

Client, 2023. https://celo.org/papers/plumo.902

34 Tiancheng Xie, Jiaheng Zhang, Zerui Cheng, Fan Zhang, Yupeng Zhang, Yongzheng Jia,903

Dan Boneh, and Dawn Song. zkBridge: Trustless cross-chain bridges made practical. In904

ACM SIGSAC Conference on Computer and Communications Security, CCS, 2022. doi:905

10.1145/3548606.3560652.906

35 A. Zamyatin, N. Stifter, A. Judmayer, P. Schindler, E. Weippl, and W. J. Knottenbelt. A907

wild velvet fork appears! Inclusive blockchain protocol changes in practice. Berlin, Heidelberg,908

2018. Springer-Verlag. doi:10.1007/978-3-662-58820-8_3.909

36 Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur Gervais, and910

William Knottenbelt. XCLAIM: Trustless, interoperable, cryptocurrency-backed assets. In911

2019 IEEE Symposium on Security and Privacy (SP), 2019.912

37 Dionysis Zindros. Decentralized Blockchain Interoperability. PhD thesis, University of Athens,913

Apr 2020.914

A Analysis915

A.1 Background from the Bitcoin Backbone [18]916

We now introduce notation, definitions, theorems, and lemmas stated in [18] which will be917

necessary for our analysis.918

AFT SIB 2024

https://doi.org/10.1145/3460120.3484784
https://doi.org/10.1145/3460120.3484784
https://doi.org/10.1145/3460120.3484784
https://doi.org/10.1145/3479722.3480999
https://api.semanticscholar.org/CorpusID:53243925
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://github.com/ZeroSync/header_chain
https://www.usenix.org/conference/usenixsecurity23/presentation/scaffino
https://www.usenix.org/conference/usenixsecurity23/presentation/scaffino
https://www.usenix.org/conference/usenixsecurity23/presentation/scaffino
https://eprint.iacr.org/2022/384
https://doi.org/10.1145/3548606.3560652
https://doi.org/10.1145/3548606.3560652
https://doi.org/10.1145/3548606.3560652
https://doi.org/10.1007/978-3-662-58820-8_3

26 Blink: An Optimal Proof of Proof-of-Work

The properties of blockchain protocols defined in the backbone model are presented below.919

Such properties are defined as predicates over the random variable viewt,n
Π,A,Z by quantifying920

over all possible adversaries A and environments Z that are polynomially bounded. Note921

that blockchain protocols typically satisfy properties with a small probability of error in a922

security parameter κ (or others). The probability space is determined by random queries to923

the random oracle functionality and by the private coins of all interactive Turing machine924

instances.925

▶ Definition 28 (Common Prefix Property [18]). The common prefix property Qcp with926

parameter k ∈ N states that for any pair of honest players P1, P2 adopting the chains C1,927

C2 at rounds r1 ≤ r2 in viewt,n
Π,A,Z respectively, it holds that C

|k|
1 ⪯ C2.928

▶ Definition 29 (Chain Quality Property [18]). The chain quality property Qcq with parameters929

µ ∈ R and ℓ ∈ N states that for any honest party P with chain C in viewt,n
Π,A,Z , it holds that930

for any ℓ consecutive blocks of C, the ratio of honest blocks is at least µ.931

▶ Definition 30 (Chain Growth Property [18]). The chain growth property Qcg with parameters932

τ ∈ R and s ∈ N states that for any honest party P that has a chain C in viewt,n
Π,A,Z , it holds933

that after any s consecutive rounds, it adopts a chain that is at least τ · s blocks longer than934

C.935

Closely following[18], we will call a query q ∈ N of a party successful if it returns a valid936

solution to the PoW. For each round i, j ∈ [q], and k ∈ [t], we define Boolean random937

variables Xi, Yi, and Zijk as follows. If at round i an honest party obtains a PoW, then938

Xi = 1, otherwise Xi = 0. If at round i exactly one honest party obtains a PoW, then Yi = 1,939

otherwise Yi = 0. Regarding the adversary, if at round i, the j-th query of the k-th corrupted940

party is successful, then Zijk = 1, otherwise Zijk = 0. Define also Zi =
∑t

k=1
∑q

j=1 Zijk.941

For a set of rounds S, let X(S) =
∑

r∈S Xr and similarly define Y (S) and Z(S). Further, if942

Xi = 1, we call i a successful round and if Yi = 1, a uniquely successful round. We denote943

with f the probability that at least one honest party succeeds in finding a PoW in a round.944

▶ Definition 31 (Typical Execution [18]). An execution is (ϵ, λ)-typical (or just typical), for945

ϵ ∈ (0, 1) and integer λ ≥ 2/f , if, for any set S of at least λ consecutive rounds, the following946

hold.947

(a) (1 − ϵ)E[X(S)] < X(S) < (1 + ϵ)E[X(S)] and (1 − ϵ)E[Y (S)] < Y (S).948

(b) Z(S) < E[Z(S)] + ϵE[X(S)].949

(c) No insertions, no copies, and no predictions occurred.950

Let n be the number of consensus nodes, out of which t are controlled by the adversary.951

Let Q be an upper bound on the number of computation or verification queries to the random952

oracle. Let L be the total number of rounds in the execution, and λ, κ security parameters.953

Finally, we denote with ν the min-entropy of the value that the miner attempts to insert in954

the chain.955

▶ Theorem 32 (Theorem 4.5 in [18]). An execution is not typical with probability less than

ϵtyp = 4L2e−Ω(ϵ2λf) + 3Q22−κ + [(n − t)L]22−ν .

▶ Lemma 33 (Lemma 4.6 in [18]). The following hold for any set S of at least λ consecutive956

rounds in a typical execution. For S = {i : r < i < s} and S′ = {i : r ≤ i ≤ s}, Z(S′) < Y (S).957

958

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 27

▶ Lemma 34 (Lemma 4.8 in [18], (aka Patience Lemma)). In a typical execution, any k ≥ 2λf959

consecutive blocks of a chain have been computed in more than k
2f consecutive rounds.960

▶ Lemma 35 (Lemma 4.1 in [18], (aka Pairing Lemma)). Suppose the k-th block B of a chain961

C was computed by an honest party in a uniquely successful round. Then the k-th block a962

chain C′ either is B or has been computed by the adversary.963

▶ Lemma 36 (Lemma 4.2 in [18], (aka Chain Growth)). Suppose that at round r an honest964

party has a chain of length l. Then, by round s ≥ r, every honest party has adopted a chain965

of length at least l +
∑s−1

i=r Xi.966

▶ Theorem 37 (Theorem 4.11 in [18], (aka Chain Quality)). In a typical execution the chain
quality property holds with parameters ℓ ≥ 2λf and

µ = 1 − 1 + f

(1 − f)(1 − ϵ) · t

n − t
− (1 + f)ϵ

1 − ϵ

> 1 − 1
1 − 2δ/3 · t

n − t
− δ/3

1 − δ/3
δ→0−−−→ n − 2t

n − t

▶ Corollary 38 (Corollary 4.12 in [18]). In a typical execution the following hold.967

Any ⌈2λf⌉ consecutive blocks in the chain of an honest party contain at least one honest968

block.969

For any λ consecutive rounds, the chain of an honest party contains an honest block970

computed in one of these rounds.971

In our analysis, we assume a typical execution in all proofs. We note that from Theorem 32972

typical execution fails with negligible probability, resulting in our proofs holding with973

overwhelming probability.974

A.2 Preliminaries975

In this section, we introduce some definitions, observations, and lemmas that will be used as976

building blocks in the formal analysis of Blink security (Section 5.1).977

Let H be a hash function modeled as a Random Oracle, and let T be the target hash978

value used by parties for solving the PoW. Given a chain C and a block b to be inserted in979

the chain, consider the hash h = H(C[−1], b) of these values, and let ctr be a counter.980

▶ Definition 39 (PoW Inequality). The PoW inequality holds if H(ctr, h) < T.981

If a ctr fulfilling the PoW inequality is found, the chain C is extended by the block b982

(which includes ctr). If no suitable ctr is found, the chain remains unaltered.983

▶ Definition 40 (Valid Chain). A chain C is (syntactically) valid if:984

C = ∅, or985

C[: −1] is valid and the PoW inequality holds for h = H(C[−2], C[−1]).986

▶ Definition 41 (Valid Block). A block is valid if it belongs to a valid chain.987

▶ Lemma 42. The following equality holds:988

C
⋃
r [:−k] =

⋃
P ∈H

CP
r [:−k] (1)989

AFT SIB 2024

28 Blink: An Optimal Proof of Proof-of-Work

Proof. We observe that C
⋃
r is a tree where each leaf CP

r corresponds to the view of the chain990

of (at least) one honest party P at some round r. C
⋃
r [:−k] is the result of taking C

⋃
r and991

removing the last k blocks from each of the leaves of the tree.
⋃

P ∈H CP
r [:−k] is the result of992

taking all the chains of honest parties at round r, chopping off the last k blocks and taking993

the union of these chains. By common prefix, honest parties’ chains can only diverge by less994

than k blocks; therefore, C
⋃
r [:−k] is a chain such that C

⋃
r [:−k] =

⋃
P ∈H CP

r [:−k], with some995

honest parties being aware of all the blocks in it, and some others lagging behind.996

◀997

▶ Definition 43 (Acceptable Chain at r). A valid chain C is acceptable at round r, if998

C = ∅, or999

C[: −1] is acceptable at r, and either C ⪯ C
⋂
r [: −k] or C

⋂
r [: −k] ⪯ C .1000

An important notion we use is an acceptable block. Intuitively, an acceptable block is a1001

block to which honest parties can switch to without violating common prefix. Honest nodes1002

will never switch to chains containing non-acceptable blocks.1003

▶ Definition 44 (Acceptable Block at r). A block is acceptable at r if it belongs to an1004

acceptable chain at r.1005

▶ Observation 45. If a block is stable in an honest party’s view, it is also acceptable.1006

▶ Observation 46. All honestly produced blocks are acceptable in the round in which they1007

are produced.1008

▶ Observation 47. All honestly produced blocks only descend from blocks that are acceptable1009

in the round in which the former are produced.1010

▶ Observation 48. Any block B produced in round rB and acceptable in round r ≥ rB, is1011

also acceptable in all rounds in the set of consecutive rounds {rB , . . . , r}.1012

▶ Definition 49 (Convergence Event at r). A block B is a convergence event at round r if1013

it is produced in a uniquely successful round rB and, by round r ≥ rB, it does not have a1014

parallel acceptable block in any round in the set of consecutive rounds {rB , . . . , r}.1015

▶ Observation 50. A convergence event is always honestly produced.1016

▶ Lemma 51. If a block B produced in round rB is a convergence event at round r, it is a1017

convergence event in all rounds in the set of consecutive rounds {rB , . . . , r}.1018

Proof. By definition, there are no acceptable blocks at {rB , . . . , r} parallel to B. Therefore,1019

B fulfills the definition of convergence event at all rounds {rB , . . . , r}.1020

◀1021

▶ Lemma 52. An acceptable block B at r must descend from all convergence events at r with1022

a height smaller or equal to B’s height.1023

Proof. Towards a contradiction, suppose there exists a convergence event B̂ at r, such that1024

B does not descend from B̂. There must be a block B′ parallel to B̂ from which B descends.1025

Because B is acceptable at r, by definition, B′ needs to be acceptable at r. However, both1026

B′ acceptable and B̂ being a convergence event, imply B̂ = B′. Thus, B′ descends from B̂,1027

reaching a contradiction. ◀1028

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 29

▶ Lemma 53. Let r be the round in which a block B was produced. For any block B and any1029

round r′, for which B is a convergence event at r′ and B ∈ C
⋂
r′ [: −k], blocks acceptable at1030

any round after r always extend B.1031

Proof. From Observation 46 and Lemma 52, honest parties will extend B in the rounds1032

between r and r′ (included). B is stable for all honest parties at round r′. Therefore, after r′
1033

all honest parties only extend B, otherwise common prefix is violated. ◀1034

We denote with |X(S)|, |Y (S)|, and |Z(S)| the number of successful queries X, Y , and1035

Z in a set of consecutive rounds S.1036

▶ Theorem 54 (General Eventual Stability). Consider a convergence event B̃ at r∗, which1037

was produced in round r̃ and it has height l̃. If there exists a block with height l ≥ l̃ + k in1038

C
⋃
r∗ then, in a typical execution, B̃ becomes stable for at least one honest party at most at1039

round r̃ + u, i.e., B̃ ∈ C
⋃̃
r+u[: −k].1040

B̃

r̃ r∗

S

k blocks

ra

k blocks

B̃ stable

ru

Sa

. . .

time

CA

Figure 11 This figure illustrates the proof of Theorem 54.

Proof. Consider Figure 11. Let l̃ be the height of B̃ and r̃ the round at which B̃ was produced.1041

Since B̃ is a convergence event, we know that it was honestly produced. Thus, at any round1042

r > r̃, honest parties have adopted a chain of length at least l̃.1043

By round r∗, since B̃ is a convergence event and due to causality, the acceptable blocks1044

with height larger than l̃ have been mined at or after r̃ . Since the blocktree at round r∗
1045

contains a block with a height l ≥ l̃ + k, at least k consecutive blocks were mined in the set1046

of consecutive rounds S′ := {r̃, . . . , r∗}. Let S := {r̃ − 1, . . . , r∗ + 1}. We can thus apply the1047

patience lemma (Lemma 34) to this set of rounds, which means that |S| > λ and typicality1048

bounds apply. In particular, |X(S)| > |Z(S′)|, which implies |X(S)| > k
2 . From chain1049

growth (Lemma 36), we know that in every round r in which there is at least one honest1050

block found, i.e. Xr = 1, honest parties increase the length of their chains by (at least) 1. It1051

follows that in any round r > r∗, honest parties have adopted a chain longer than l̃ + k
2 .1052

Towards contradiction, suppose that B̃ ̸∈ C
⋃̃
r+u[: −k]. This means that there exists a1053

round ru in which all honest parties have adopted a stable chain CA of length lA ≥ l̃ + k1054

which excludes B̃. We note that all honest parties must have adopted CA, otherwise common1055

prefix would be violated. It follows that: (i) ru < r + u because otherwise, by chain quality1056

and chain growth, at round r + u, B̃ would be stable; (ii) r∗ < ru because, by definition of1057

convergence event at r∗, B̃ does not have any parallel acceptable adversarial block at round1058

AFT SIB 2024

30 Blink: An Optimal Proof of Proof-of-Work

r∗. The blocks CA[−(k + 1) :] have a height of at least l̃ and are produced after r∗. We now1059

proceed with a counting argument for the set of rounds Sa := {r∗, . . . , ra}, where ra ≤ ru1060

is the first round in which CA contains at least k blocks with a height higher or equal to l̃.1061

Again, since (at least) k consecutive blocks were mined in Sa and we can apply Lemma 341062

to this set of rounds, which means that |Sa| > λ and typicality bounds apply. In particular,1063

|X(Sa)| > |Z(S′
a)|, which implies |X(Sa)| > k

2 .1064

From Lemma 36, we know that there are at least |X(Sa)| consecutive blocks extending1065

B̃. From Lemma 34, we know that |Sa| ≥ λ, which means that typicality bounds apply, i.e.,1066

|X(Sa)| > |Z(Sa)|, hence |X(Sa)| > k
2 and Z(Sa) < k

2 . The chain CA which extends B′ but1067

not B̃, has a length of at most l̃ − 1 + k
2 , as honest parties do not extend shorter chains.1068

Therefore, at round ra, all honest parties cannot have adopted CA, because they have a chain1069

of length at least l̃ + k, which includes B̃. This concludes the contradiction.1070

◀1071

▶ Theorem 55 (General Vicinity). Consider any acceptable block Ḃ at round r, produced in ṙ1072

and having a height larger than any honestly produced block in any round before ṙ. Let B̃1073

be a convergence event at ṙ, such that B̃ is the closest convergence event to Ḃ in terms of1074

height, and such that the height l̃ of B̃ is smaller or equal to the height l̇ of Ḃ, i.e., l̃ ≤ l̇. In1075

a typical execution, l̇ − l̃ < k.1076

B̃

r̃

S

Y (S)

Z(S)

ṙ

Ḃ

time

Figure 12 This figure illustrates the proof of Theorem 55.

Proof. Consider Figure 12. Let r̃ ≤ ṙ be the round in which B̃ was produced. We now1077

look at the blocks {B}Y (S) that were honestly produced in the uniquely successful rounds1078

in S := {r̃ + 1, . . . , ṙ − 1}, i.e., Y (S). By definition, every block B ∈ {B}Y (S) has a height1079

smaller than Ḃ. However, due to Lemma 52, every block B ∈ {B}Y (S) also extends B̃ and1080

thus has a height larger than B̃.1081

Because B̃ is the nearest convergence event at ṙ, any block B ∈ {B}Y (S) needs to have1082

a parallel, acceptable at ṙ (and thus mined at or before ṙ) block. Otherwise, B would be1083

the nearest convergence event to Ḃ. Because these parallel blocks are acceptable, they need1084

to extend B̃ (Lemma 52) and thus by causality, need to have been produced at or after r̃1085

and at or before ṙ, which means they are produced in S′ := {r̃, . . . , ṙ}. Additionally, from1086

Lemma 35, we know that these parallel blocks need to be adversarially produced. Thus, there1087

needs to be at least one successful adversarial query within S′ for each uniquely successful1088

round in S, i.e., |Z(S′)| ≥ |Y (S)|.1089

L. Aumayr, Z. Avarikioti, M. Maffei, G. Scaffino, D. Zindros 31

Due to causality, the blocks between B̃ and Ḃ need to have been produced in S′′ :=1090

{r̃, . . . , ṙ − 1}. Suppose towards a contradiction, the difference in height between Ḃ and B̃1091

is k or more. From Lemma 34 we know that |S′′| > λ, thus |S| ≥ λ, and thus, typicality1092

bounds apply to this set of rounds. Thus, by Lemma 33 it holds that |Z(S′)| < |Y (S)|, which1093

contradicts the above. ◀1094

AFT SIB 2024

	1 Introduction
	2 Protocol Design
	2.1 Optimal Proof of Proof-of-Work Client
	2.2 Blink Client

	3 Applications
	3.1 Payment Verification
	3.2 Bootstrapping via Blink
	3.3 State Verification
	3.4 Historical Transaction Verification
	3.5 Bridging with Blink

	4 Model
	4.1 Notation
	4.2 Ledger Model
	4.3 PoW Blockchain Model

	5 Analysis
	5.1 Safety and Liveness of Blink
	5.2 Safety and Liveness of B:= [k]

	6 Practicality, Limitations, and Extensions of Blink
	7 Evaluation
	8 Conclusion
	A Analysis
	A.1 Background from the Bitcoin Backbone bitcoinbackboneprotocol
	A.2 Preliminaries

