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Abstract5

Payment channel networks (PCNs) are a promising technology to improve the scalability of crypto-6

currencies. PCNs, however, face the challenge that the frequent usage of certain routes may deplete7

channels in one direction, and hence prevent further transactions. In order to reap the full potential8

of PCNs, recharging and rebalancing mechanisms are required to provision channels, as well as an9

admission control logic to decide which transactions to reject in case capacity is insufficient. This10

paper presents a formal model of this optimisation problem. In particular, we consider an online11

algorithms perspective, where transactions arrive over time in an unpredictable manner. Our main12

contributions are competitive online algorithms which come with provable guarantees over time. We13

empirically evaluate our algorithms on randomly generated transactions to compare the average14

performance of our algorithms to our theoretical bounds. We also show how this model and approach15

differs from related problems in classic communication networks.16

2012 ACM Subject Classification Applied computing → Electronic commerce; Theory of computa-17

tion → Mathematical optimization; Theory of computation → Online algorithms18

Keywords and phrases Payment channel networks, Blockchain, Optimisation, Rebalancing, Online19

Algorithms, Layer 220

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2321

1 Introduction22

Blockchain consensus protocols are notoriously inefficient: for instance, Bitcoin can only23

support 7 transactions per second on average which makes it unrealistic to use in everyday24

situations. Payment channel networks like Bitcoin’s Lightning Network [15] and Ethereum’s25

Raiden [1] have been proposed as scalability solutions to blockchains. Instead of sending26

transactions to the blockchain and waiting for the entire blockchain (which can comprise of27

millions of users) to achieve consensus, any two users that wish to transact with each other28

can simply open a payment channel between themselves. Opening a payment channel requires29

an initial funding transaction on the blockchain where both users lock some funds only to30

use in the channel. Once a payment channel is opened, the channel acts as a local, two-party31

ledger: payments between the users of channel simply involve decreasing the balance of the32

payer by the payment amount, and increasing the balance of the payee correspondingly.33

As these local transactions only involve exchanging signatures between the two users and34

do not involve the blockchain at all, they can be almost instantaneous. As long as there35

is sufficient balance, payments can occur indefinitely between two users, until the users36

decide to close the channel. This would involve going back to the blockchain and takes, in37

the worst case, a small constant number of transactions. Thus, with only a small constant38

number of on-chain transactions, any two users can potentially make arbitrarily many costless39

transactions between themselves.40

Apart from joining a payment channel network to efficiently transact with other users, an41

additional financial incentive to joining the network is to profit from forwarding transactions.42

Any two users that are not directly connected can transact with each other in a multi-hop43

fashion as long as they are connected by a path of payment channels. To incentivise the44

intermediary nodes on the path to forward the payment, the network typically allows these45
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nodes to charge a transaction fee. Thus, it is common for users to join the network specifically46

to play the role of an intermediary node that routes transactions, creating channels and47

fees optimally and selecting the most profitable transactions to maximise their profit from48

transaction fees [4, 8].49

However, greedily accepting and routing incoming transactions could rapidly deplete50

a user’s balance in their channels. In particular, if certain routes are primarily used in51

one direction, their channels can get depleted, making it impossible to forward further52

transactions. Accounting for this problem can be non-trivial since demand patterns are hard53

to predict and often confidential.54

To resolve this issue, PCNs typically support two mechanisms:55

On-chain recharging: A user can close and reopen a depleted channel with more funds56

on-chain.57

Off-chain rebalancing: An alternative solution is to extend the lifetime of a depleted58

channel without involving the blockchain, by finding a cycle of payment channels in the59

network to shift funds from one channel to another.60

Both cases, however, entail a cost. Intermediaries need to consider the tradeoff between61

admitting transactions and potential recharging and rebalancing costs. This decision making62

process is especially important to big routers which are the primary maintainers of payment63

channel networks like the Lightning Network.64

In this work, we focus on the problem of admission control, recharging and rebalancing in65

a single payment channel from the perspective of an intermediary node that seeks to route66

as many transactions as possible with minimal costs. Specifically, we address the following67

research question:68

69

Can we design efficient online algorithms for deciding when to accept/reject transactions,70

and when to recharge or rebalance in a single payment channel?71

72

We seek to address this problem with as few restrictions on user actions in order to73

ensure that our work remains realistic. Thus, we assume a fixed PCN topology with some74

recharging and rebalancing costs, and a global fee function that is linear in the transaction75

size. We also assume users incur a rejection cost in the form of opportunity cost when they76

reject to route a transaction.77

We are interested in robust solutions which do not depend on any knowledge or assump-78

tions on the demand. Accordingly, we assume that transactions can arrive in an arbitrary79

order at a channel, and aim to design online algorithms which provide worst-case guarantees.80

We are in the realm of competitive analysis, and assume that an adversary with knowledge81

of our algorithms chooses the most pessimal online transaction sequence. Our objective is to82

optimise the competitive ratio [6]: we compare the performance of our online algorithms (to83

which the transaction sequence is revealed over time) with the optimal offline algorithm that84

has access to the entire transaction sequence in advance.85

1.1 Our contributions86

We initiate the study of a fundamental resource allocation problem in payment channel87

networks, from an online algorithms perspective. Our main result is a competitive online88

algorithm to admit transaction streams arriving at both sides of a payment channel, and89

also to recharge and rebalance the channel, in order to maximise the throughput over the90

channel while accounting for costs. In particular, our algorithm achieves a competitive ratio91
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of 7 + 2⌈log C⌉ where C + 1 is the length of the rebalancing cycle used to replenish the funds92

on the channel off-chain. We also provide lower bounds on the amount of funds needed in a93

channel in order to ensure our algorithm is c-competitive for c < log C
log log C .94

In order to prove our main theorem, we decompose the problem into two simpler sub95

problems that may also be of independent interest:96

1. Sub problem 1: The first and most restrictive sub problem considers a transaction stream97

coming only from one direction across a payment channel, and users do not have the98

option to reject incoming transactions. We present a 2-competitive algorithm for this99

problem, which is optimal in the sense that no deterministic online algorithm can achieve100

a lower competitive ratio.101

2. Sub problem 2: As a relaxation, our second sub problem allows users to reject transactions102

although all transactions are still restricted to come from one direction along a payment103

channel. We show that our algorithm achieves a competitive ratio of 2 +
√

5−1
2 for this104

sub problem. We stress that our lower bound of 2 we achieve in sub problem 1 also holds105

in this sub problem, hence our competitive ratio of 2 +
√

5−1
2 is close to optimal.106

All intermediate and main results are summarised in Table 1. The algorithms and analysis107

designed to address these sub problems are eventually used as building blocks for our main108

algorithm and main theorem.109

We complement our theoretical worst-case analysis by performing an empirical evaluation110

of the performance of our algorithm on randomly generated transaction sequences. We111

observe that our algorithms perform much better on average compared to our theoretical112

worst-case bound.113

Sub problem Competitive ratio

Unidirectional stream without rejection 2
Unidirectional stream with rejection 2 +

√
5−1
2

Bidirectional stream 7 + 2⌈log C⌉
Table 1 Summary of the theoretical results in our paper. The first column presents each sub

problem we analyse in our paper and the second column shows the competitive ratio achieved by
our algorithms for each sub problem

1.2 Related work114

Maintaining balanced payment channels. As channel balances are typically private, classic115

transaction routing protocols on payment channel networks like Flare [16], SilentWhispers [13]116

and SpeedyMurmurs [17] focus mainly on throughput and ignore the issue of balance depletion.117

Recently, several works shift the focus on maintaining balanced payment channels for as long118

as possible while ensuring liveness of the network. Revive [10] initiated the study rebalancing119

strategies, Spider[19] uses multi-path routing to ensure high transaction throughput while120

maintaining balanced payment channels, the Merchant[20] utilises fee strategies to incentivise121

the balanced use of payment channels, and [11] uses estimated payment demands along122

channels to plan the amount of funds to inject into a channel during channel creation, to123

just give a few examples. Our work focuses on minimising costs incurred in the process of124

handling transactions across a channel and thus we also indirectly seek to maintain balanced125

payment channels. Moreover, in contrast to previous works which typically assume some126

CVIT 2016
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form of offline knowledge of the transaction flow in the network, we provide an algorithm127

which comes with provable worst-case guarantees.128

Off-chain rebalancing. Off-chain rebalancing has been studied as a cheaper alternative129

to refunding a channel by closing and reopening it on the blockchain. In the Lightning130

Network, there are already several off-chain rebalancing plugins for c-lightning1 and lnd2.131

An automated approach to performing off-chain rebalancing using the imbalance measure as132

a heuristic has been proposed in [14]. Our work similarly studies when to rebalance payment133

channels, however we make the decision in tandem with other decisions like accepting134

or rejecting transactions. Recently, [5] and [10] propose a global approach to off-chain135

rebalancing where demand for rebalancing cycles is aggregated across the entire network and136

translated to an LP which is subsequently solved to obtain an optimal rebalancing solution.137

These approaches are orthogonal and complementary to ours as our focus concerns decision138

making in a single payment channel and not the entire network.139

Online algorithms for payment channel networks. Online algorithms for payment channel140

networks have also been studied in [3] and [9]. Avarikioti et al. [3] establish impossibility141

results against certain classes of adversaries, however they only consider a limited problem142

setting where their algorithms can only accept or reject transactions (with constant rejection143

cost). Fazli et al. [9] considers the problem of optimally scheduling on-chain recharging given144

a sequence of transactions. In contrast to previous work, our work considers a more general145

problem setting where our algorithms can not only accept or reject transactions, but also146

recharge and rebalance channels off chain. We also extend the cost of rejection to take into147

account the size of the transaction.148

Relationship to classic communication networks. Admission control problems such as149

online call admission [2, 12] are fundamental and have also received much attention in150

the context of communication networks. However, in classic communication networks the151

available capacity of a link in one direction is independent of the flows travelling in the other152

direction, and moreover, link capacities are only consumed by the currently allocated flows.153

In contrast, the capacities of links in payment-channel networks are permanently reduced by154

transactions flowing in one direction, but can be topped up by flows travelling in the other155

direction. The resulting rebalancing opportunity renders the underlying algorithmic problem156

significantly different.157

2 Model158

Payment channels. We model the payment channel network as an undirected graph G =159

(V, E). A payment channel between users ℓ (left) and r (right) in the network is an edge160

(ℓ, r) ∈ E. We denote the balance of user ℓ (resp. r) in the channel (ℓ, r) by b(ℓ) (resp. b(r)).161

The capacity of the channel is the total amount of funds locked in the channel. That is, for a162

channel (ℓ, r), the capacity of (ℓ, r) is b(ℓ) + b(r). A left-to-right transaction of amount x163

decreases ℓ’s balance by x and increases r’s balance by x and vice versa for a right-to-left164

transaction of x.165

Recharging and rebalancing payment channels. When a user in a channel does not have166

sufficient funds to accept a transaction, the user can either reject the transaction, recharge the167

channel, or rebalance the channel. Recharging the channel happens on-chain and corresponds168

1 https://github.com/lightningd/plugins/tree/master/rebalance
2 https://github.com/bitromortac/lndmanage
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to closing the payment channel on the blockchain and opening a new channel with more169

funds. In contrast, rebalancing the channel happens entirely off-chain (refer to Figure 1 for170

an example). Here, users find a cycle of payment channels to shift funds from one of their171

other channels to refund the depleted channel.172

Transactions. We consider a transaction sequence Xt = (x1, ..., xt), xi ∈ R+, that arrives173

at a payment channel online. Each transaction xi has both a value and a direction along a174

payment channel. The value of a transaction is simply the amount that is being transferred.175

The direction of a transaction across a payment channel (ℓ, r) determines who is the sender176

and who is the receiver. When we have a sequence of transactions that go in both directions177

along a payment channel, we use −→x to denote a transaction that goes from left-to-right and178

←−x to denote a transaction that goes from right-to-left. We say a user, wlog ℓ, accepts a179

transaction of size x coming from the left to right direction along the channel (ℓ, r) if ℓ agrees180

to forward x to r. Similarly, we say a user ℓ rejects a transaction x coming from the left to181

right direction along the channel (ℓ, r) when ℓ does not forward the transaction to r. When it182

is clear which channel and direction we are referring to, we simply say ℓ accepts or rejects x.183

Costs. We consider three types of costs in our problem setting:184

1. Rejecting transactions: For a user ℓ, the revenue in terms of transaction fees from185

forwarding a payment of size x is Rx + f2, where R, f2 ∈ R+. Consequently, the cost of186

rejecting a transaction of size x is simply the opportunity cost of gaining revenue from187

accepting the transaction, i.e. Rx + f2.188

2. On-chain recharging: For any user ℓ, the cost of recharging a channel on-chain is189

F + f1, where F is some function of the amount of funds ℓ puts into the new channel (this190

captures the opportunity cost of locking in the funds in the channel) and f1 ∈ R+ is an191

auxiliary cost independent of F which captures the on-chain recharging transaction fee.192

3. Off-chain rebalancing: For any user ℓ, the cost of off-chain rebalancing for an amount193

x is C · (Rx + f2), where C is the length of the cycle along which funds are sent −1. In194

the example of off-chain rebalancing in Figure 1, the length of the rebalancing cycle is 3195

and thus C = 2.196

Let us denote by OFF the optimal offline algorithm and ON an online deterministic197

algorithm. We denote by CostON(Xt) (resp. CostOFF(Xt)) the total cost of ON (resp.198

OFF) given the transaction sequence Xt.199

100

15

h

rℓ

2 8

7

5 5

5

off-chain

rebalancing

55

10

h

rℓ

7 3

12

Figure 1 Example of off-chain rebalancing with users ℓ, h, and r. The graph on the right depicts
the channel balances after off-chain rebalancing.

Competitive ratio. We say an online algorithm ON is c-competitive if for every transaction
sequence Xt generated by the adversary,

CostON(Xt) ≤ c ·CostOFF(Xt)

Main problem. Our main problem is to design a competitive deterministic online algorithm200

that determines when to accept/reject transactions and when to recharge or rebalance the201

channel given a bidirectional stream of transactions across a payment channel. More precisely,202

we consider a stream of transactions that can arrive from both right to left or left to right in203

CVIT 2016
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rℓ

x = 1
x = 9

COST = 9R + f2

(a) Accepting a transaction

rℓ

x = 9
x = 9

COST = 9R + f2

(b) Rejecting a transaction

rℓ

x = 1
x = 9

COST = C(2R + f2)

(c) Off-chain rebalancing

rℓ

x = 1
x = 9

COST = 2 + 3 + f1

(d) Recharging

Figure 2 Example of actions users ℓ and r can take in the general bidirectional stream setting.
Each square represents 1 coin.

a given payment channel (ℓ, r). ℓ (resp. r) can choose to accept or reject transactions coming204

in the left-to-right (resp. right-to-left) direction in the stream. Either user would incur a cost205

of Rx + f2 for rejecting a transaction of size x. Both users can also recharge the channel206

on-chain at any point, incurring a cost of Fℓ + Fr + f1 where Fℓ and Fr are functions of the207

funds put into the channel by ℓ and r respectively. Since transactions are streaming in both208

directions in this model, both users would incur costs in this setting. Thus, we seek to design209

an algorithm that minimises the cost of the entire channel. Refer to Figure 2 for examples of210

the actions that a user can take in our main bidirectional transaction stream setting.211

To this end, we give a formal definition of two sub problems of decreasing restrictiveness212

on user actions. We present these sub problems as the algorithms and analysis used to solve213

these sub problems are used in developing the algorithm and analysis for our main problem.214

Unidirectional stream without rejection. In this model, transactions stream only in one215

direction along a given payment channel. Here, we assume users cannot reject incoming216

transactions. Formally, given a channel (ℓ, r) and a transaction stream from wlog left to right,217

user ℓ only accepts a transaction x if b(ℓ) > x. Otherwise, ℓ has to recharge the channel218

on-chain with more funds, incurring a cost of F + f1 where F is some function of the amount219

of funds ℓ adds to the channel. As we only consider transactions streaming in one direction,220

only one user would incur costs in this setting (the user that has to decide whether to accept221

or reject transactions).222

Unidirectional stream with rejection. In this model, we still restrict the transaction223

stream from wlog left to right in a payment channel (ℓ, r). However, in addition to accepting224

transactions and recharging, ℓ can now also reject transactions, incurring a rejection cost of225

Rx + f2 for a transaction of size x.226

3 Algorithmic Building Blocks227

Before we describe and analyse the performance of our algorithms in the various problem228

settings, we first introduce two algorithmic building blocks that we use extensively in our229

work. The first building block is an algorithm Funds. It takes a sequence of transactions as230

an input and returns the amount of funds that an optimal algorithm uses on this sequence.231

The purpose of the algorithm is to track the funds OFF has in their channel assuming that232

the sequence of transactions ends at this point. For the first two sub problems we show how233

to compute Funds. For the main problem, we propose a dynamic programming approach in234
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Algorithm 1 (γ, δ)-recharging

Initialise: Ftracker, X ← 0, ∅
1 for transaction x in order of arrival do
2 concatenate x to X

3 F ′tracker ← Funds(X)
4 if F ′tracker > Ftracker then
5 Ftracker ← F ′tracker + δ

6 recharge to γFtracker

Appendix E. The second building block is a general recharging online algorithm that calls235

Funds as a subroutine and uses the output to decide when and how much to recharge the236

channel. The intuition behind the recharging online algorithm is to recharge whenever the237

amount of funds in OFF’s channel “catches up" to the amount of funds ON has in their238

channel.239

Building block 1: tracking funds of OFF. For a given transaction sequence Xt =240

(x1, . . . , xt), let us denote A(Xi) to be the amount of funds OFF would use in the channel241

if OFF gets the sequence Xi = (x1, . . . , xi) (i.e. the length i prefix of Xt) as input. By242

appending subsequent transactions xi+1, . . . , xt from Xt to Xi, we can view A(Xi) as a partial243

solution to the online optimisation problem that gets updated with any new transaction.244

In the unidirectional transaction stream (with or without rejection) setting, A(Xi) refers245

to the funds a user locks into a payment channel. In the bidirectional transaction stream246

setting, A(Xi) refers to the total balance of both users in the channel. We assume that given247

an input sequence Xt, Funds(Xt) performs the necessary computations and returns A(Xt).248

For our main problem, computing Funds(Xt) is generally NP-hard, but we can approximate249

it to a constant factor, see [18] for more details.250

Building block 2: using tracking for recharging. In Algorithm 1, we describe an online251

(γ, δ)-recharging algorithm ON that uses Funds as a subroutine to decide when and how252

much to recharge the channel. ON is run by one user (wlog ℓ) in a payment channel (ℓ, r).253

ON calls Funds after each transaction to check if the new transaction sequence results in254

a significant increase in the amount of funds OFF has in their channel. Whenever ON255

notices that OFF’s funds have increased above a threshold (Algorithm 1), ON recharges the256

channel with an amount of γ(A(Xi) + δ) where A(Xi) is the amount of funds OFF has in257

their channel.258

Let us denote At := maxi≤t A(Xi). Now we state and prove (in Appendix C.1 and Ap-259

pendix C.2) two important properties of the (γ, δ)-recharging algorithm.260

▶ Lemma 1. Algorithm 1 with parameters (γ, δ) ensures that ON always has at least γ times261

the amount of funds OFF has and ensures that ON incurs a cost of at most γ(At+δ)+f1·⌈At

δ ⌉.262

Next, we show a simple lower bound in terms of At for the cost of OFF given a sequence263

of transactions Xt.264

▶ Lemma 2. If At > 0, then CostOFF(Xt) is at least At + f1.265

4 Unidirectional transaction stream without rejection266

In this section we consider the first sub problem where, given a payment channel (ℓ, r),267

transactions stream along the channel in only one direction (wlog left to right). Moreover, ℓ268

CVIT 2016
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has to accept an incoming transaction of size x and forward it to r if ℓ’s balance b(ℓ) ≥ x.269

Otherwise, ℓ needs to recharge the channel on-chain (and accept the transaction after).270

The optimal offline algorithm OFF follows a simple strategy: since it knows the entire271

stream of transactions in advance, it makes a single recharging action at the beginning of the272

transaction sequence Xt of size
∑t

i=1 xi. The cost incurred by OFF is thus f1 +
∑t

i=1 xi.273

Now, we present a 2-competitive online algorithm ON for this sub problem (see Al-274

gorithm 5 in Appendix A). ON uses (γ, δ)-recharging with parameters γ = 1 and δ = f1. The275

algorithm accepts all transactions and the recharging ensures that ON always has enough276

funds.277

▶ Theorem 3. The algorithm described above is 2-competitive in the unidirectional transaction278

stream without rejection.279

In addition, we note that ON is optimal in this setting. The next theorem (with proof280

in Appendix C.4) proves that no deterministic algorithm can achieve a strictly smaller281

competitive ratio compared to ON. In particular, our proof shows that ON cannot lock too282

much funds into the channel, otherwise ON’s cost is too high, but if ON locks too little283

funds, it needs to recharge often.284

▶ Theorem 4. There is no deterministic algorithm that is c-competitive for c < 2 in the285

unidirectional transaction stream without rejection sub problem.286

5 Unidirectional transaction stream with rejection287

In this section we consider the second sub problem where transactions are still streaming288

along a given payment channel (ℓ, r) in one direction (wlog left to right). This time though,289

a user can choose to reject incoming transactions. We describe an algorithm (detailed in290

Appendix A as Algorithm 6) with competitive ratio 2 +
√

5−1
2 . We note that the competitive291

ratio for this setting is larger than the competitive ratio we achieve in the previous setting292

as OFF has a wider range of decisions.293

Let us call a transaction of size x big if x > Rx + f2 and small otherwise. We first observe294

that OFF in this setting always rejects big transactions.295

▶ Lemma 5. OFF rejects all big transactions in the unidirectional transaction stream with296

rejection.297

Thus, the strategy of OFF in this setting is to simply reject all big transactions. Moreover,298

if there are sufficiently many small transactions in the sequence to offset the cost of re-299

charging, OFF makes a single recharging action at the beginning of the sequence of size300 ∑
x∈Xt,x is small x for a cost of f1 +

∑
x∈Xt,x is small x.301

The online algorithm performs (1,
√

5−1
2 f1)-recharging and it accepts a transaction x if it302

has enough funds and x is small. The following theorem (with proof in Appendix C.6) states303

that ON is (2 +
√

5−1
2 )-competitive in this problem setting.304

▶ Theorem 6. The algorithm described above is (2 +
√

5−1
2 )-competitive in the unidirectional305

transaction stream with rejection sub problem.306

Before analysing the optimality of ON, we first observe, as a simple corollary of Theorem 4,307

that the lower bound of 2 also holds for this sub problem.308

▶ Corollary 7. There is no deterministic algorithm that is c-competitive for c < 2 in the309

unidirectional transaction stream with rejection sub problem.310
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We conjecture that no other deterministic algorithm can perform better that ON in this311

setting. Moreover, we sketch an approach to prove the conjecture in Appendix B.312

▶ Conjecture 8. There is no deterministic algorithm that is c-competitive for c < 2 +
√

5−1
2313

in the unidirectional transaction stream with rejection setting.314

6 Bidirectional transaction stream315

In this section, we consider the most general problem setting, where for a given payment316

channel (ℓ, r), transactions stream along the channel (ℓ, r) in both directions. A user ℓ (resp.317

r) can accept or reject incoming transactions that stream from left to right (resp. right to318

left). Either user would incur a cost of Rx + f2 for rejecting a transaction of size x. ℓ does319

not need to take any action when encountering transactions that stream from right to left as320

they simply increase the balance of ℓ in the channel (ℓ, r). Both users can also decide at any321

point to recharge their channel on-chain, or rebalance their channel off-chain.322

Our main online algorithm ON for the bidirectional transaction stream setting is detailed323

in Algorithm 4. For simplicity, we assume that R = 0 in the rejection cost. This means that324

the cost of rejecting a single transaction of size x is simply f2, and rebalancing an amount of325

x off-chain now only incurs a cost of Cf2. Our algorithm is run by both users on a payment326

channel and is composed of three smaller algorithms: the first is a recharging algorithm to327

determine when and how much to recharge the channel on-chain. The second algorithm328

(Algorithm 2) decides whether to accept or reject new transactions and when to perform329

off-chain rebalancing. The last algorithm (Algorithm 3) describes how to store the funds330

received from the other user of the channel.331

(4 + 2⌈log C⌉, f1)-recharging. ON runs an on-chain recharging algorithm similar to332

Algorithm 1 (see Algorithm 4 and Algorithm 4 in Algorithm 4) but with parameters γ =333

4 + 2⌈log C⌉ and δ = f1. Since we are in the bidirectional transaction stream setting, Funds334

returns the amount of funds OFF has inside the entire channel (i.e. b(ℓ) + b(r)) given a335

transaction sequence.336

Let us look at the period between the on-chain recharging instances of ON. From337

Algorithm 4 in Algorithm 4, we know that ON ensures that it has more than 4 + 2⌈log C⌉338

times more funds than OFF locked in the channel. These funds are distributed in the339

following way: ON initialises ⌈log C⌉+ 2 “buckets" on each end of the channel. We denote340

set of left-side buckets as Bℓ and it consists of Bℓ
s, Bℓ

1, . . . , Bℓ
⌈log C⌉, Bℓ

o. Likewise, the set of341

right-side buckets is Br and it consists of Br
s , Br

1 , . . . , Br
⌈log C⌉, Br

o .342

After recharging, users decide how to distribute funds in the channel, so the buckets343

Bℓ
s and Br

s are filled with 2Ftracker funds. Buckets Bℓ
o and Br

o are empty (0 funds). Other344

buckets contain Ftracker funds.345

Looking ahead, the funds in the i-th bucket on both sides are used to accept transactions346

x with a size in the interval
[

Ftracker
2i , Ftracker

2i−1

)
. The funds in Bs are used to accept transactions347

with a size less than Ftracker
C . Finally, Bo stores excess funds coming from payments from the348

other side when all other buckets are full.349

Transaction handling. When a transaction arrives at the channel, based on the direction350

of the transaction, either ℓ or r executes Algorithm 2 to decide whether to accept the351

transaction. Wlog let us assume ℓ encounters transaction −→x . If Ftracker
2i < x ≤ Ftracker

2i−1 for352

some i ∈ [⌈log C⌉] and Bℓ
i has sufficient funds, the funds from Bℓ

i are used to accept the353

transaction. If Bℓ
i lacks sufficient funds for accepting x, ℓ rejects x.354

Now, we consider the case where x ≤ Ftracker
C . If Bℓ

s has sufficient funds, ℓ uses the funds355

from Bℓ
s to accept x. If Bℓ

s has insufficient funds to accept x, ℓ performs off-chain rebalancing356
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with an amount such that after deducting x from Bℓ
s, there would still be 2Ftracker funds left357

in Bℓ
s. ℓ subsequently accepts x. The required funds for off-chain rebalancing are transferred358

from Br
o and Br

s (see Algorithm 2 and Algorithm 2 in Algorithm 2). Whenever Bℓ
o > 0 and359

some bucket in Bℓ gets under its original capacity, funds are reallocated from Bℓ
o to fill the360

bucket. Figure 3 in Appendix D depicts an example of how funds are used from different361

buckets to accept transactions.362

Algorithm 2 Decision on transaction

1 Decide(Ftracker, x, Bsdr, Brcv)
2 Status← Accept
3 if Ftracker

2i < x ≤ Ftracker
2i−1 and x ≤ Bsdr

i then
4 Accept x

5 X ← min(Ftracker, Bsdr
i − x + Bsdr

o )
6 Bsdr

o ← max(0, Bsdr
i − x + Bsdr

o − Ftracker)
7 Bsdr

i ← X

8 else if xi ≤ Ftracker
C and x ≤ Bsdr

s then
9 Accept x

10 X ← min(2Ftracker, Bsdr
s − x + Bsdr

o )
11 Bsdr

o ← max(0, Bsdr
s − x + Bsdr

o − 2Ftracker)
12 Bsdr

s ← X

13 else if xi ≤ Ftracker
C and x > Bsdr

s then
14 Do off-chain rebalancing to fill Bs and pay f2C.
15 Brcv

o ← Brcv
o − (2Ftracker −Bsdr

s ).
16 Brcv

s ← Brcv
s − x.

17 Accept x

18 Bsdr
s ← 2Ftracker.

19 else
20 Reject x
21 Status← Reject
22 return (Bsdr, Brcv, Status)

Handling funds coming from the other side. When a transaction x is accepted by wlog ℓ,363

ON calls Algorithm 3 to distribute the transferred funds among r’s buckets in the following364

way: r first uses x to fill Br
s up to its capacity of 2Ftracker (see Algorithm 3 in Algorithm 3). If365

there are still funds left, r refills the Br
i buckets in descending order from i = ⌈log C⌉ to i = 1.366

Intuitively, the reason why buckets are refilled in descending order is due to our simplified367

cost model for this problem where we assume the cost of rejection for any transaction is368

f2. Thus, rejecting three small transactions size x costs thrice as much as rejecting a larger369

transaction of size 3x. Finally, if there are still some funds left, they are added to Br
o .370

Our main theorem (with proof in Appendix C.7) shows that our main algorithm is371

7 + 2⌈log C⌉ competitive.372

▶ Theorem 9. Algorithm 4 is 7 + 2⌈log C⌉ competitive.373

Finally, we also analyse in the next lemma (with proof in Appendix C.8) how much374

funds ON needs to lock in the channel to have a chance to be c-competitive. We make the375

construction for A, the amount of funds that OFF locked in the channel. Observe that376
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Algorithm 3 Handling funds coming from the other side

1 HandleFunds(Ftracker, x, B)
2 X ← min(2Ftracker, Bs + x)
3 x← max(x + Bs − 2Ftracker, 0)
4 Bs ← X

5 for i ∈ [⌈log C⌉] in decreasing order do
6 if x > 0 then
7 X ← min(Ftracker, Bi + x)
8 x← max(x + Bi − Ftracker, 0)
9 Bi ← X

10 Bo ← Bo + x return (B)

Algorithm 4 Main algorithm

Initialise : left side buckets Bℓ

Initialise : right side buckets Br

Initialise : tracker Ftracker, X ← 0, ∅
1 for transaction x in order of arrival do
2 concatenate x to X

3 F ′tracker ← Funds(X)
4 if F ′tracker > Ftracker then
5 Ftracker ← F ′tracker + f1
6 recharge to 2(2 + ⌈log C⌉)Ftracker

7 sdr, rcv ← ℓ, r

8 if x is from right to left then
9 sdr, rcv ← r, ℓ

10 Bsdr, Brcv, Status← Decide(Ftracker, x, Bsdr, Brcv)
11 if Status == Accept then
12 Brcv ← HandleFunds(Ftracker, x, Brcv)

OFF would rather reject transactions that have average size > A
C than perform off-chain377

rebalancing to accept them.378

▶ Lemma 10. For any A, if ON’s cost for rejection is at most c times OFF’s cost for379

rejection (for c < log C
log log C ), any deterministic ON needs to lock at least σ = A ·

( 1
c+1 log C

log c+1 + 1
)

380

funds in the channel.381

▶ Theorem 11. There is no deterministic c-competitive algorithm for c ∈ o(
√

log C).382

Proof. From Lemma 10 for any A, ON needs A · (
1

c+1 log C

log c+1 + 1) funds to have its rejection383

cost c-competitive. But ON also needs to lock some funds in the channel. The total cost is384

then c + A(
1

c+1 log C

log c+1 + 1), which is bigger than O(
√

log C). ◀385

7 Empirical Evaluation386

Methodology. We consider the performance of Algorithm 4 on randomly generated transaction387

sequences. We compare it with the optimal offline algorithm OFF. Since computing the388
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optimal solution is NP-hard [18], we use dynamic programming to compute the cost (see the389

algorithm in Appendix E).390

Average performance of ON. We sample 50 random transaction sequences of length 50391

each. In each sequence, transaction sizes are sampled independently from a folded Gaussian392

with mean 0 and standard deviation 3, and then we assign its direction (left-to-right or393

right-to-left) uniformly at random. Finally, we quantise the size of the transaction to the394

closest integer. We run both OFF and ON on the generated sequences and compute five395

important metrics.396

We present our results in Table 2. As we can see from the cost of ON vs OFF in Table 2,397

the competitive ratio is generally lower than the 7 + 2⌈log C⌉ bound as suggested by our398

conservative worst-case analysis in Theorem 9. In addition, we notice that when we use some399

heuristics to make further minor modifications to ON, we achieve even better performance.400

We compare the average-case performance of ON and OFF with these modified algorithms401

in Appendix F, and also on sequences sampled from different distributions. Finally, we also402

perform an empirical case study of the Lightning Network which we present in Appendix G.403

Param OFF ON

C f2 Cost A(X) Accept
rate

Off-chain re-
balancing

Rechar-
gings

Cost A(X) Accept
rate

Off-chain re-
balancing

Rechar-
gings

2 0.5 15.02 6.4 0.78 0.8 1 63.3 44.26 0.50 0.9 2.18
8 0.5 15.21 6.38 0.77 0 1 87.79 69.06 0.50 0 2.04
2 2 23.6 14.26 0.95 5.36 1 127.02 100.2 0.91 0.38 5.86
8 2 24.5 13.9 0.92 0 1 184.32 156.6 0.9 0 5.84

Table 2 Comparison between OFF and ON for f1 = 3 and R = 0. A(X) is the total amount of
funds in the channel. “Accept rate" shows the fraction of transactions that were accepted. “Off-chain
rebalancing" shows how much funds on was moved along the channel using off-chain rebalancing.
“Rechargings" shows the number of rechargings performed. Note that OFF recharges only once.

8 Conclusion404

This paper presents competitive strategies to maintain minimise cost while maximising405

liquidity and transaction throughput in a payment channel. Our algorithms come with formal406

worst-case guarantees, and also perform well in realistic scenarios in simulations.407

We believe that our work opens several interesting avenues for future research. On the408

theoretical front, it would be interesting to close the gap in the achievable competitive ratio,409

and to explore the implications of our approach on other classic online admission control410

problems. Furthermore, while in our work we have focused on deterministic algorithms, it411

would be interesting to study the power of randomised approaches in this context, or to412

consider different adversarial models.413
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Algorithm 5 Unidirectional transaction stream without rejection

Initialise: tracker Ftracker, X ← 0, ∅
Initialise: balance b = 0

1 for transaction x in order of arrival do
2 concatenate x to X

3 F ′tracker ← Funds(X)
4 if F ′tracker > Ftracker then
5 Ftracker ← F ′tracker + f1
6 recharge to Ftracker

7 Accept x

Algorithm 6 Unidirectional transaction stream with rejection

Initialise: tracker Ftracker, X ← 0, ∅
Initialise: balance b = 0

1 for transaction x in order of arrival do
2 concatenate x to X

3 F ′tracker ← Funds(X)
4 if F ′tracker > Ftracker then
5 Ftracker ← F ′tracker +

√
5−1
2 f1

6 recharge to Ftracker

7 if b ≥ x and x is small then
8 Accept x

9 else
10 Reject x

20 Yuup van Engelshoven and Stefanie Roos. The merchant: Avoiding payment channel depletion473

through incentives. 2021 IEEE International Conference on Decentralized Applications and474

Infrastructures (DAPPS), pages 59–68, 2021.475

A Algorithms476

B Optimality of deterministic algorithms in a unidirectional stream477

with rejection478

Sketch proof of Conjecture 8.479

Sketch. The best ON algorithm needs to recharge the channel when OFF does. If it480

recharges the channel later, it incurs cost that OFF is not incurring, so the competitive ratio481

worsens. If it recharges sooner, there exists a sequence that either forces OFF to waste funds482

or incur a big cost.483

After OFF recharges, it can reconsider and accept previously rejected transactions, but484

ON needs to reject them. Now, the situation is similar as in the case without rejection.485

ON needs to recharge, but it already paid for some rejections whereas OFF pays only for486

recharging and accepting very small transactions.487

ON disadvantaged in this way cannot achieve a better competitive ratio than 2+
√

5−1
2 ◀488
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C Omitted proofs489

C.1 Proof of Lemma 1490

Proof. The first part of the claim follows from the fact that the moment A(Xi) > Ftracker491

for some i, Ftracker gets updated to A(Xi) + δ > A(Xi) and ON recharges the channel to492

γFtracker > γA(Xi).493

For the second part of the claim, we note that the cost incurred by ON is simply the total494

amount of funds added to the channel with an additional cost of f1 each time ON recharges495

the channel on-chain. The amount of funds locked in the channel for ON is always at most496

At + δ and the times when ON recharges the channel occurs whenever OFF increases its497

funds by an amount of at least δ. Thus, the number of rechargings for ON that can occur is498

at most ⌈At

δ ⌉ with a cost of f1 for each recharging instance. The total cost incurred by ON499

is therefore γ(At + δ) + f1 · ⌈At

δ ⌉. ◀500

C.2 Proof of Lemma 2501

Proof. We first note that the sequence of costs for OFF is monotonically increasing, i.e.502

CostOFF(Xt) ≤ CostOFF(Xt+1). This comes from the fact that any action of OFF at503

step i of the sequence can only increase its cost (i.e. either rejecting xi+1 or recharging the504

channel and then accepting xi+1), or it does not change the cost at all (i.e. by accepting505

xi+1 without recharging).506

Since At > 0, we know that OFF recharged on-chain at some point to an amount At for507

a recharging cost of At + f1. Since the sequence of costs for OFF is monotonically increasing,508

CostOFF(Xt) ≥ At + f1. ◀509

C.3 Proof of Theorem 3510

Proof. From Lemma 1, setting γ = 1 and δ = f1 gives ON a cost of at most At +f1 +f1 ·⌈At

f1
⌉.511

Since f1 · ⌈At

f1
⌉ ≤ f1 · (At

f1
+ 1) = At + f1, the cost of ON is at most 2(At + f1). From512

Lemma 2, we know that the cost of OFF is at least At + f1. Thus, ON is 2-competitive. ◀513

C.4 Proof of Theorem 4514

Proof. We prove the theorem by contradiction. For the sake of contradiction, suppose that515

there exists a c-competitive algorithm ON for c = 2−ε for some ε > 0. Consider the following516

sequence of transactions: ε
3 , ε

3 , ε
3 , . . . . We note that when the sequence of transactions is of517

length k, the cost of OFF is f1 + k · ε
3 as the optimal solution is to recharge the channel at518

the start of the sequence to the total sum of the transactions in the sequence.519

For ON to remain (2− ε)-competitive after processing the first transaction, ON locked520

at most f1 − εf1 + ε
3 in the channel (CostON(X1) = 2f1 − εf1 + 2 ε

3 ).521

We generalize the above idea and show that either ON has always smaller amount than522

f1 − ε
3 in the channel or at some point it has at least f1 − ε

3 . In both cases, we derive a523

contradiction to the (2− ε) competitive ratio of ON.524

First, suppose that ON always recharges to at most f1 − ε′ for some ε′ > 0. Then after t525

transactions, the number of rechargings is at least ⌈ t ε
3

f1−ε′ ⌉. So CostON(Xt) ≥ t· ε3 +f1⌈
t ε

3
f1−ε′ ⌉.526

Setting t = 3k(f1−ε′)
ε for some k gives CostOFF(Xt) = f1 + k(f1 − ε′) and CostON(Xt) =527

k(f1− ε′) + kf1, but since limk→∞
2kf1−kε′

(k+1)f1−kε′ = 2f1−ε′

f1−ε′ for any ε′, then the competitive ratio528

is at least 2.529
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Now, suppose that t is the first time that after processing a transaction, ON has at least530

f1 − ε
3 locked in the channel. At time t, CostOFF(Xt) = f1 + t ε

3 . Cost of ON is f1 + t ε
3531

for funds locked in the channel plus any additional recharging cost. But since it is the first532

time ON recharged by more than f1, the cost for recharging is f1⌈
t ε

3
f1−ε′ ⌉ ≥ f1 + tε

3 for some533

other positive ε′. So again, CostON(Xt) ≥ t ε
3 + f1 + t ε

3 + f1 = 2(f1 + t ε
3 ) which is twice of534

CostOFF(Xt).535

In both cases the cost of ON is at least twice that of OFF which contradicts the536

assumption that ON is (2− ε)-competitive. ◀537

C.5 Proof of Lemma 5538

Proof. Accepting a transaction x incurs a cost of x for increasing funds. Rejecting a539

transaction x incurs a cost of Rx + f2. So any big transaction should be rejected. ◀540

C.6 Proof of Theorem 6541

Proof. From Lemma 5, OFF rejects big transactions. Thus, ON should also reject these542

transactions.543

While At = 0, both OFF and ON reject all transactions in the sequence and both incur544

the same cost. The moment At > 0, we know that OFF recharged with an amount at least545

At to accept all small transactions in the sequence. Thus CostOFF(Xt) ≥ At + f1.546

At this time ON would have rejected the small transactions in the sequence for at most547

a cost of At + f1 together with some additional recharging cost. From Lemma 1, we know548

that the recharging cost for ON is at most549

At +
√

5− 1
2 f1 +

⌈
At

√
5−1
2 f1

⌉
f1 ≤ At +

√
5− 1
2 f1 + At

√
5−1
2

+ f1.550

Summing up both costs, we get551

CostON(Xt) ≤At + f1 + At +
√

5− 1
2 f1 + At

√
5−1
2

+ f1552

=
(

2 +
√

5− 1
2

)
CostOFF(Xt)553

554

◀555

C.7 Proof of our main Theorem556

Here, we detail the full proof of Theorem 9557

Proof. We know that for any i, CostOFF(Xi) ≥ CostOFF(Xi−1). From Lemma 1 and558

Lemma 2, we know that cost of ON for recharging (in Algorithm 4) is at most (5 +559

2⌈log C⌉)CostOFF(Xt). Let t1 and t2 (with t2 > t1) be the two consecutive times ON560

recharges, then we show that the cost of ON for rebalancing and rejection is smaller than561

2(CostOFF(Xt2)−CostOFF(Xt1)). Then CostON(Xt) ≤ (7 + 2⌈log C⌉)CostOFF(Xt).562

For every strategy of OFF and any two consecutive recharging times t1 and t2, we show563

that the rebalancing and rejection cost of ON between times t1 and t2 is at most twice that564

of OFF as defined by the strategy. Having the strategy of OFF, we split the time between565

rechargings even further, into epochs; we will show that the competitive ratio of 2 holds for566

every epoch.567
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The left epoch starts with the first transaction that makes some bucket in Bℓ non-full568

(smaller than the original amount); the left epoch ends either before ON recharges, or Bℓ
o > 0.569

In a left epoch, every transaction from the right side is accepted; non-fullness of some buckets570

on one side means Bo > 0 on the other side. The right epoch is defined similarly, but since571

the epochs are disjoint, we can prove the statement for a left epoch only.572

For transactions below Ftracker
C , we argue that the cost of ON is at most the cost of OFF.573

ON accepts everything, so ON pays only for rebalancing. OFF either rebalances too, in574

which case the cost is the same as ON; or it rejected some transactions. Since ON starts with575

2Ftracker funds in Bs and refills the bucket with the highest priority, this means OFF rejected576

some transactions summing to at least Ftracker. There are at least C of them, so OFF’s cost577

is also above Cf2. If there is a counterexample containing a small transaction that OFF578

rejects, then we can modify it to a counterexample where the transaction is increased to579

Ftracker
C . So we can show the ratio in the case that no small transactions are coming.580

Now that we have the strategy for OFF (decisions before rebalancing), we define some581

variables that track the competitive ratio. We will look at incoming transactions, and prove582

that the competitive ratio is always below 2. We say that a transaction x belongs to a bucket583

Bi if Ftracker
2i < x ≤ Ftracker

2i−1 . A transaction is red if it is rejected by ON and accepted by OFF584

and it is blue if it is accepted by ON and rejected by OFF. Let ρi (βi) be the number of red585

(blue) transactions in the bucket Bi. We can disregard transactions for which ON and OFF586

make the same decision. If the transaction is rejected by both, it improves the ratio. If the587

transaction is accepted by both, it can be simulated by decreasing Ftracker.588

We prove by induction that
∑

k≤j ρk ≤ 2
∑

k≤j βk for all j. We show that if the equality589

holds and OFF has enough funds to accept incoming transactions, ON accepts too.590

Let us examine j = ⌈log C⌉. We know that the ratio between any two transaction sizes591

in B⌈log C⌉ is less than 2, so any two red transactions are bigger than one blue. Moreover,592

all funds that arrived from the right side were put into B⌈log C⌉ (if it is not full). So if593

ρ⌈log C⌉ = 2β⌈log C⌉, ON has at least the amount of funds in B⌈log C⌉ OFF has. To continue594

the induction for buckets with smaller indices, we reassign some red or blue transactions to595

different buckets. If ρ⌈log C⌉ < 2β⌈log C⌉, we move at most one red and some blue transactions596

(in decreasing order of size) to B⌈log C⌉−1, stopping just before ρ⌈log C⌉ ≥ 2β⌈log C⌉.597

For general j, we know that, due to the reassignment, in every bucket smaller than j,598

ON rejected exactly twice the number of transactions OFF did. Moreover, OFF needs to599

use at least the same amount of funds to accept red transactions compared to funds needed600

by ON to accept blue ones. Now, in the bucket Bj holds ρj = 2βj . Again, we pair every601

two red transactions to one blue, such that the sum of red is bigger than blue. Before the602

reassignment, the ratio between any two transactions is at most 2. The reassignment (if603

occurred) moved at most one red and at least one blue that is smaller than any original604

transaction in the bucket, so we can pair the moved red to moved blue. In transactions in605

buckets in j and bigger, OFF used more funds than ON. Any funds that arrived from the606

right side were put into some bucket in j or below, so if OFF has enough funds to accept,607

ON has too.608

The same argument holds for a right-epoch, and we note that epochs are disjoint and609

cover the entire transaction sequence between times t1 and t2. Since we chose the consecutive610

recharging times t1 and t2 arbitrarily, the rebalancing and rejection cost of ON between any611

two consecutive rechargings is at most twice that of OFF within the same period. Therefore,612

Algorithm 4 is 7 + 2⌈log C⌉ competitive. ◀613
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Figure 3 An example of how funds are transferred across a payment channel and how buckets
are refilled. Both ℓ and r start with full buckets. The first transaction is in the left-to-right direction
and is transferred using funds from Bℓ

2 to Br
o . The second transaction is in the right-to-left direction

and is small, thus funds from Br
s are used. Br

s is immediately refilled using funds from Br
o . The

third transaction is in the left-to-right direction and uses funds from Bℓ
1.

C.8 Proof of Lemma 10614

Proof. We describe an epoch: OFF starts with A funds left, then some transactions are sent615

from left to right and finally one transaction of size A is sent right to left. If the funds in the616

channel of ON is smaller than σ, then the cost of ON is more than c times that of OFF.617

One epoch consists of at most log C
log c+1 + 1 phases. In phase i (starting from i = 0), there618

are (c + 1)i transactions of size A
(c+1)i . OFF always accepts all transactions in the latest619

phase. If at the end of any phase, the cost of ON is more than c times of OFF, then a620

transaction of size A is sent back and another epoch starts. Observe that for c < log C
log log C ,621

after rebalancing the epoch ends too (because the cost is c times bigger). We can assume622

this cannot happen, ON does not perform off-chain rebalancing.623

We compute how much funds ON needs to stay within the competitive ratio until624

the last phase (where transactions of sizes A
C are sent). After phase i, OFF accepted625

(c + 1)i transactions and rejected (c+1)i−1
c , so OFF can reject up to (c + 1)i − 1 transactions626

among (c+1)i+1−1
c . So ON has to accept at least (c+1)i+1−1−c(c+1)i+c

c = (c + 1) (c+1)i−1−1
c627

transactions.628

The size of transactions is decreasing, so optimally, ON accepts transactions when they629

are needed. So in phase i + 1 it needs to accept (c + 1) (c+1)i−1
c − (c + 1) (c+1)i−1−1

c = (c + 1)i
630

transactions. Of course, it needs to accept the transaction in the phase 0.631

The cost of transactions accepted by ON in phase i > 0 is (c + 1)i−1 A
(c+1)i = A

c+1 . To632

maintain the competitive ratio ON needs to accept transactions worth A + A log C
log c+1 in total.633

Independently of the cost of OFF and ON before, there can be one epoch after another634

where the ratio is worse than c, so at the end, the ratio would be above c. ◀635
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D Helpful diagrams636

E Computing the cost of OFF using dynamic programming637

In this section, we describe a dynamic programming algorithm ON that solves the main638

problem. We assume that the size of transactions is integer (moreover the sum of transactions639

should be small).640

Let Costi(Fℓ, Fr) be the minimum cost for rejecting and off-chain rebalancing in pro-641

cessing sequence Xi that ends with b(ℓ) = Fℓ and b(r) = Fr (For values of Fℓ and Fr smaller642

that 0, we define it to be ∞). Costi(Fℓ, Fr) can be derived from Costi−1 given the decision643

on the i’th transaction.644

Let us assume wlog that i’th transaction is from ℓ to r. OFF has three choices when645

encountering xi. The first option is to reject xi, the the cost is A1 = Costi−1(Fℓ, Fr)+Rxi +646

f2. The second option is to accept xi which gives cost A2 = Costi−1(Fℓ + xi, Fr − xi). The647

last option is to off-chain rebalance before xi and then accept xi. Note that any off-chain648

rebalancing before rejecting or accepting (while having enough funds) can be postponed.649

This gives cost A3 = mina≤Fℓ+xi
Costi−1(a, Fr + Fℓ − a) + C ·R(Fℓ + xi − a) + Cf2. OFF650

chooses the best option, that means Costi(Fℓ, Fr) = min {A1, A2, A3}651

We handle right to left transaction in the same way.652

Given the previous, ON computes Costt for all valid pairs (Fℓ, Fr) and the final cost is653

CostOFF(Xi) = min
Fℓ,Fr

Costt(Fℓ, Fr) + Fℓ + Fr + f1654

To bound the time complexity of ON, we observe some bounds for S = F ∗ℓ + F ∗r ,655

where F ∗ℓ and F ∗r are the values of Fℓ and Fr achieving the minimal cost. Observe that656

S ≤
∑

i≤t xi, it is not worth to have more money than the sum of the trasactions. We657

can strenghten the inequality and instead of
∑

i≤t xi, we can compute the minimal amount658

needed to accept every transaction. The other option is to reject everything, so we know659

that f1 + S ≤
∑

i≤t Rxi + f2.660

Now we can prove the theorem about the described algorithm ON.661

▶ Theorem 12. ON computes the optimal cost in time O(tS3), where S is the bound on the662

maximal funds in the channel and t the number of transactions.663

Proof. In the dynamic programming, we take into account all possible decisions ON can664

make, by this, correctness follows.665

The algorithm ON tries all possible amounts between 1 and S and starting distributions.666

There are S2 of them. While computing one value, it needs to look at at most S precomputed667

values. And it needs to do it at most t times. ◀668

Using dynamic programming for calculating OFF has two advantages. First, we can easily669

recover the decisions of OFF. Secondly, dynamic programming provides us with optimum670

solution for all subsequences of Xt. This is useful for implementing Algorithm 4.671

F Heuristics to improve the average-case performance of our online672

algorithm673

We notice in our experiments that ON seems to overcharge the channel. This is most674

noticeable when we observe the effect of C on the performance of ON. From Table 2,675

increasing C in a range of medium (not too small) values does not change OFF’s cost676
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noticeably. In contrast, both the average cost and total amount of locked funds of ON grows677

with C. This is due to the fact that ON uses (4 + 2⌈log C⌉, f1)-recharging to ensure that it678

always has significantly more funds than OFF, even though a big fraction of these funds679

remain unspent. ON is also limited by the fact that it does not borrow funds from other680

buckets when a bucket is depleted. For instance, ON always charges Bs to 2Ftracker and only681

uses these funds to accept transactions that are smaller than Ftracker
C . Thus, as C increases,682

the number of transactions that fall into the Bs bucket decreases and the funds in Bs remain683

unspent.684

These observations motivate us to design a less pessimistic version of ON that we expect685

will perform better than ON. We introduce ON-I which is a slightly altered version of686

ON: ON-I follows the (⌈log C⌉, f1)-recharging algorithm and does not divide the funds into687

separate buckets. Instead, ON-I accepts all the transactions smaller than Ftracker as long as688

it has funds. Otherwise, if the transaction is small (< Ftracker
C ) it off-chain rebalances to fill689

the bucket and accepts the transaction. Similar to ON, ON-I rejects a transaction if it is690

larger than Ftracker
C .691

Our empirical results in Table 3 confirms that the average cost of ON-I is significantly692

smaller than ON. The acceptance rate of ON-I is slightly smaller than ON, which is expected693

as ON-I does not have separate funds for each range of transactions (as defined by the694

buckets), and as a result might miss some transactions. We observe that ON-I performs695

more off-chain rebalancings compared to ON on average because ON-I does not reserve696

separate funds for small transactions. However, one issue with both ON and ON-I is that697

they recharge the channel too often (as soon as Ftracker < A(Xt)). As can be seen from698

Table 2 (f2 = 2), both algorithms perform more than 5 rechargings on average for transaction699

sequences of length 50. This increases the cost of both algorithms significantly as each700

recharging instance incurs a cost of at least f1.701

We thus design another version of ON-I to address the aforementioned problem. ON-II702

works exactly as ON-I except that it does not recharge the channel as frequently as ON-I703

does. ON-II only recharges the channel if α · Ftracker < A(X), where α > 1 is some constant704

that controls the how often the algorithm recharges the channel and can be fine-tuned705

empirically based on f1 and f2. If we set α = 1, ON-II becomes equivalent to ON-I and has706

higher acceptance rate. This is favorable when f2 is large and f1 is small. Conversely, by707

increasing α, ON-II recharges the channel less frequently but the acceptance rate falls. This708

is favorable when f1 is large and f2 is small. In our experiments, we observe that for the case709

f2 = 2, C = 2, when all the other parameters are as Table 2, α = 2 yields the lowest average710

cost. Thus, in our evaluation of ON-II, we use α = 2 and from Table 2 we note that this711

choice of α halves the number of rechargings compared to ON-I, which consequently leads712

to lower average cost. Additionally, we note that the total amount of funds in the channel of713

ON-II is close to OFF.714

F.0.0.1 Varying the distribution of the generated sequences.715

We also evaluate how the performance of our algorithms is affected by the variance of716

the transaction size. We sample 50 sequences each of length 50 with each transaction in717

the sequence independently sampled from the folded normal distribution with mean 0 and718

standard deviation σ, for a range of σ values across [3, 20]. We then observe the cost of719

ON and OFF. As can be seen from in Figure 4a, the cost of both algorithms rises as σ720

increases. This is due to the fact that increasing the variance of the sampled transactions721

reduces the probability of getting a similarly sized transaction coming from the other side,722

thus increasing the speed at which the balance on one side gets depleted. We note, however,723
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that Figure 4a shows that even for large values of σ, ON’s average cost remains a lot smaller724

than the worst case upper bound of 7 + 2⌈log C⌉.725

Another factor we look at is how the asymmetry of the transaction flow along a channel726

can affect the performance of our algorithms. To do so, we generate 50 sequences each of727

length 50, and sample the size of each transaction from a folded normal distribution with728

mean 0 and standard deviation 3. We then sample the direction of the transactions according729

to a Bernoulli distribution with parameter p, where p represents the probability of sampling730

a left-to-right transaction. We see from Figure 4b that the cost of all algorithms decrease731

as p increases from 0 to 0.5. As p increases from 0.5 to 1, the cost function increases again.732

This conforms to our intuition that extremely asymmetric sequences are harder to handle as733

the lack of sufficiently many transactions from one side just increases the speed at which the734

balance on the other side gets depleted.735

Param OFF ON

C f2 Cost A(X) Accept
rate

Off-chain re-
balancing

Rechar-
gings

Cost A(X) Accept
rate

Off-chain re-
balancing

Rechar-
gings

2 0.5 15.02 6.4 0.78 0.8 1 63.3 44.26 0.50 0.9 2.18
8 0.5 15.21 6.38 0.77 0 1 87.79 69.06 0.50 0 2.04
2 2 23.6 14.26 0.95 5.36 1 127.02 100.2 0.91 0.38 5.86
8 2 24.5 13.9 0.92 0 1 184.32 156.6 0.9 0 5.84
Param ON-I ON-II

C f2 Cost A(X) Accept
rate

Off-chain re-
balancing

Rechar-
gings

Cost A(X) Accept
rate

Off-chain re-
balancing

Rechar-
gings

2 0.5 30.74 6.86 0.44 11.18 2.18 26.52 5.56 0.41 10.22 1.2
8 0.5 39.98 19.86 0.48 0 2.04 32.94 15.9 0.46 0 1.18
2 2 66.16 14.42 0.84 25.48 5.86 60.38 11.3 0.78 27.16 2.2
8 2 81.35 42.72 0.89 1.5 5.84 58.38 33.3 0.83 1.56 2.16

Table 3 Comparison between the performance of OFF, ON, ON-I and ON-II on randomly
generated transaction streams. The result is averaged over 50 sequences each of length 50. The size
of each transaction is independently sampled from the folded normal distribution with mean 0 and
standard deviation 3, then quantised to the closest integer. We set f1 = 3 and R = 0. A(X) is the
total amount of funds in the channel from recharging the channel. “Accept rate" shows the average
fraction of transactions that were accepted. “Off-chain rebalancing" shows how much funds on
average was moved along the channel using off-chain rebalancing. “Rechargings" shows the average
number of rechargings performed. Note that since OFF knows the entire sequence in advance, it
only recharges the channel once at the beginning of each sequence.

G Case study: Lightning Network736

We also ran a case study of the Lightning network. We first run our experiments with737

realistic parameters taken from Lightning Network data. In the Lightning Network, f1 is the738

on-chain transaction fee (roughly 1000 satoshi) which is a lot larger than f2, the base fee one739

receives when forwarding a payment (around 1 satoshi).740

From analysis of the Lightning Network (We use snapshot from September 2021) [7], we741

know that the average cycle length is 4.15 (after excluding roughly 10% of vertices that are742

not part of any cycle). That means the value C in Theorem 9 is just slightly above 4. Details743

are in Table 4.744
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(b) p is the probability of sampling a
left-to-right transaction.

Figure 4 Average cost of our algorithms over 50 randomly generated transaction streams each of
length 50. In both figures the size of each transaction is sampled from the folded normal distribution
with mean 0. The standard deviation of the normal distribution is fixed to 3 in the right figure,
however in the left figure the standard deviation is varying on the x-Axis. We use the parameters
f1 = 3, f2 = 2, R = 0, C = 4, α = 2.

Cycle length ≤ 4 5 6 7 N.A.
Frequency 49, 424(77.44%) 7, 758(12.16%) 469(0.73%) 12(0.02%) 6, 157(9.65%)
Table 4 Frequency of the length of shortest cycle between all users in the Lightning Network.

The last column shows the frequency of channels that are not part of any cycle (N.A. not applicable)
The average cycle length is 4.15
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