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Abstract14

Blockchain performance has historically faced challenges posed by the throughput limitations of15

consensus algorithms. However, recent breakthroughs in research have successfully alleviated these16

constraints. One of the key elements is the introduction of a modular architecture that decouples17

consensus from execution. Due to these recent advances, attention has shifted to the execution layer.18

While parallel transaction execution is a promising solution for increasing throughput, practical19

challenges persist. Its effectiveness varies based on the workloads, and the associated increased20

hardware requirements raise concerns about undesirable centralization, given that already over 30%21

of Ethereum nodes are unable to keep up. These increased requirements result in full nodes and22

stragglers synchronizing from signed checkpoints, decreasing the trustless nature of blockchains.23

In response to these challenges, this paper introduces Pythia, a system designed to extract24

execution hints for the acceleration of straggling and full nodes. Notably, Pythia achieves this25

without compromising the security of the system or introducing overhead on the critical path of26

consensus. Evaluation results demonstrate a notable speedup of up to 60%, effectively addressing27

the gap between theoretical research and practical deployment. The quantification of this speedup is28

achieved through realistic blockchain benchmarks derived from a comprehensive analysis of Ethereum29

and Solana workloads, constituting an independent contribution.30
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1 Introduction35

Due to recent research efforts reaching visa-level throughput for Byzantine Fault-Tolerant36

Consensus [7, 13, 23, 1, 17], the performance of smart contract execution has shifted into37

focus. This is particularly relevant as many blockchains, such as Ethereum [4], still execute38

transactions sequentially, not taking advantage of modern multicore architectures.39

Realizing this new challenge, parallel execution engines have emerged [11, 25] that allow40

for parallel rather than sequential processing. In many practical deployments of these new41

execution engines, such as in Solana, Aptos, or Sui [27, 10, 26], execution is decoupled from42

consensus, removing the execution from the critical path of consensus. Although this results43
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in a dirty ledger [24] where transactions, even though included in a block, might still be44

aborted during execution, this approach has shown to improve throughput significantly [7].45

These parallel execution engines can be divided into two main categories: Optimistic and46

Guided execution engines [11, 27, 21, 8]. Guided execution engines, as used in Solana [27]47

and Sui [26], rely on an exhaustive set of resource addresses, often referred to as hints, that48

the client has to send alongside the transaction. The execution engine then schedules the49

transactions for execution while accounting for potential read-write conflicts, guaranteeing50

at the application level that no conflicts may arise. If a transaction fails to exhaustively51

declare its dependencies, the execution engine detects the out-of-bounds access and aborts52

the transaction. In the database context, this is comparable to pessimistic approaches, where53

locking is used to prevent conflicts.54

Meanwhile, optimistic execution engines, as used in Aptos [10, 11], optimistically execute55

transactions in parallel, detect conflicts as they arise, and re-execute transactions when56

necessary. While, in the worst case, optimistic execution engines may have a high re-57

execution overhead, they simplify application development, as applications don’t have to58

provide execution hints and they can be integrated more easily into existing blockchains59

where the concept of execution hints does not exist [25]. However, the actual overhead of60

fully optimistic execution is still unclear, as the Polygon team observed a minimal speedup61

compared to sequential execution due to the nature of their blockchain workload [25].62

Inspired by this, as a first contribution in this work, we identify and close a clear gap63

between theoretical research and practical deployments; the lack of realistic blockchain64

workloads that correctly capture the type and frequency of data dependencies and contention.65

This is essential as the high levels of contention we identified in our analysis, significantly66

affect the effectiveness of the execution engine.67

Additionally to the unclear practical impact, parallel transaction execution comes with68

a second significant caveat: it is a force for centralization. Modern blockchains utilizing69

concurrent execution also have higher hardware requirements, and to make matters worse70

run so fast that struggling consensus nodes and full nodes have no choice but to catch up, not71

by auditing and re-executing the transactions, but by simply downloading signed checkpoints.72

This is especially staggering given that, at the time of writing, over one-quarter of all73

Ethereum nodes are unable to keep up for diverse reasons at lower hardware requirements74

and throughput [6].75

Catching up is important for several reasons. First, struggling full nodes will only respond76

with significant delays to their clients. Struggling validators might not be able to propose or77

propose a significant number of stale transactions, reducing the throughput of the system.78

Furthermore, in the presence of faulty nodes, the system might stall until all correct validators79

catch up to the head of the chain.80

When catching up through signed checkpoints only a smaller subset of active nodes verify81

the validity of the blocks in the chain. While this is consistent with the standard BFT82

assumptions, where for any number of faulty nodes f ′ > f the system cannot guarantee83

safety, in practical deployments there are recovery mechanisms that allow even a minority of84

correct validators to eventually re-establish safety after a successful attack [2, 3]. However,85

this requires correct and active validators to verify all blocks in the chain to identify validity86

violations or equivocations and initiate the recovery protocol. Furthermore, these validity87

guarantees only extend to the client if full nodes also execute and verify all blocks before88

providing them to their clients. This is also consistent with the initial Bitcoin vision for full89

nodes and validators [16, 20, 18]. We denote this property as unconditional validity.90

In this paper, we propose Pythia, a framework that helps struggling validators and91
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full nodes, hereafter denoted as stragglers, catch up in blockchains that deploy optimistic92

execution engines as, for example, Aptos [10], Monad [15] or Sei [22], without sacrificing93

unconditional validity. Pythia achieve this by bridging the gap between optimistic and94

guided execution engines by extracting accurate hints during the actual execution and95

providing them to stragglers to catch up.96

Pythia does not rely on hints for safety and does not introduce any overhead on the97

critical path of consensus. This reestablishes the initial security vision of Bitcoin with98

minimal overhead. Our evaluation of Pythia shows that stragglers can, depending on the99

workload, execute blocks up to 60% faster.100

In summary, we provide the following contributions:101

We propose Pythia, a framework to enable stragglers to catch up through guided102

execution without relaxing security guarantees.103

We construct a microbenchmark for parallel smart contract execution engines based on104

real-world data.105

We evaluate Pythia under the proposed microbenchmark and show a speed up of up to106

60% compared to optimistic parallel execution.107

2 Blockchain Workloads108

Most approaches in academia and industry that evaluate parallel smart contract execution109

engines either generate random, artificial peer-to-peer transfers [11] with uniform distribu-110

tions or apply non-blockchain-based workloads [12] such as Uber’s, Youtube’s, or Twitter’s.111

However, these do not reflect the real-world workloads that production blockchains are112

subject to. Due to this, these benchmarks are unable to highlight the shortcomings of113

existing parallel smart contract execution engines. While some works [25] evaluate the114

performance of the execution engine by re-executing a part of the past transaction history,115

this approach has two important limitations. First, the blockchains these workloads stem116

from do not natively support parallel execution, and, therefore, the smart contracts were117

not developed with concurrency in mind. Second, these workloads are restricted to their118

respective ecosystems and cannot easily be ported to a different blockchain to compare the119

performance of two competing approaches from different ecosystems. In contrast, for our120

workloads, we extract the essential points of contention from different application settings to121

guarantee easy portability to diverse frameworks and virtual machines.122

In this section, we analyze the transaction history of popular blockchains and blockchain123

applications. The purpose of this analysis is twofold: First, to identify acceleration opportun-124

ities for Pythia through careful execution scheduling based on hints, compared to existing125

optimistic parallel execution engines. Second, to provide a set of realistic and versatile126

blockchain workloads for our evaluation and make them accessible to the community.127

Therefore, we conducted a thorough analysis of the user activity on Ethereum, the most128

well-known smart contract ecosystem, and Solana, the most prominent blockchain that129

supports parallel execution. As a result, we identified four realistic and popular blockchain130

execution scenarios: NFT Minting, DEX Trading, Peer-to-Peer (P2P) Transactions, and a131

Mixed Workload.132

These scenarios cover a wide range of execution characteristics, from heavy contention133

and complex contract interactions to simple P2P transactions. This allows for a more134

comprehensive evaluation of execution engines and their ability to handle the demands in a135

real-world blockchain setting.136
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(a) Ethereum Workloads
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(b) DEX Workloads
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(c) Mixed Workload

To create the benchmarks, we analyzed the average distribution of resource accesses137

throughout 2022. Since transactions are not time-independent, instead of calculating the138

yearly average, we computed the average access distribution across every 1000 blocks for139

the NFT, P2P, and Mixed workloads. For the DEX workload, we performed a day-by-day140

assessment. To account for variability, we split it into two workloads: one representing the141

average daily volume and another representing the 30 most contended days of the year.142

In the following, we describe the workloads in detail:143

2.1 Peer-to-Peer Transaction Workload144

First, the Peer-to-Peer Transaction workload. Instead of assuming a uniform distribution,145

we measured the distribution of senders and receivers of payment transactions on Ethereum.146

The result is displayed in Figure 1a. On the x-axis, we display resource frequency groups147

(e.g. 1, 2, 10, .. resource accesses per 1000 blocks) and on the y-axis the percentage share of148

each of the groups. Even though the largest group is independent resource accesses (around149

40% of both receivers and senders only appear on average once every 1000 blocks), over 10%150

of the transactions involve the same account.151

Algorithm 1 P2P Smart Contract
1: resourcetable← ∅
2: procedure accesstwo(addr1, addr2)
3: for i = 1→ R do
4: resourcetable[addr1]+ = 1
5: resourcetable[addr2]+ = 1
6: end for
7: end procedure

P2P transactions always at least conflict on the sender balance and on the receiver balance.152

We, therefore, created a very simple smart contract for our benchmark, that can be ported153

trivially to any smart contract language. Algorithm 1 shows the pseudocode. The smart154

contract holds a resource table, and each transaction accesses two resources (i.e. sender155
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and receiver balance). We do the table assignment in a loop of R iterations to simulate a156

realistic runtime, given that in most blockchain ecosystems there is a comprehensive number157

of checks (reads and writes) for each P2P transaction. This parameter can be obtained by158

comparing the execution time of the simplified smart contract with the runtime of a regular159

transaction in the given ecosystem.160

2.2 NFT Workload161

Next, the NFT Minting workload is derived from Ethereum’s minting behavior in 2022. The162

distribution of smart contract accesses and miner addresses is also shown in Figure 1a. There163

is already significantly more contention in this workload, as the two most popular NFT smart164

contracts combined show up in over 35% of all transactions while only a small number of165

smart contracts are only accessed once within the same period. Meanwhile, the accounts166

minting the NFTs are well distributed, and over 50% of users only minted one NFT within167

the 1000 block period.168

Algorithm 2 Single Resource Smart Contract
1: resourcetable← ∅
2: procedure accessone(addr1)
3: for i = 1→ R do
4: resourcetable[addr1]+ = 1
5: end for
6: end procedure

In the case of NFT minting, we expect each transaction that mints the same NFT to169

conflict due to the NFT index that is incremented with each transaction. This index is also170

usually used to limit the number of NFTs. The pseudocode is displayed in Algorithm 2.171

Each transaction accesses a single resource in the table and increments the value R times,172

analog to the P2P workload to simulate a realistic runtime complexity.173

2.3 Decentralized Exchange Workload174

In the context of decentralized exchanges, we created two DEX Workloads for which we175

gathered data on the daily distribution of different trading pairs on Uniswap [14] throughout176

2022. The first workload is an Average DEX Workload derived from the annual average.177

As we observed a large variance in the daily distribution of trading behavior, we created a178

second workload, termed a Bursty DEX Workload that we computed based on the average179

over the thirty most contended days. The results of this analysis are depicted in Figure 1b180

where the x-axis represents the frequency of unique pairs and the y-axis the percentage share181

of this group. We observe that on average, over 30% of all transactions trade the same coin182

pair, while on the 30 most contended days, over 45% of the transactions trade the same coin183

pair, and the three most popular trading pairs make up over 70% of all transactions.184

In DEX smart contracts, each transaction for a given coin-pair at least touches the185

same liquidity pool, as such, at least transactions trading the same coin-pair on a given dex186

necessarily have to conflict. Therefore, we use the same smart contract as in Algorithm 2.187

2.4 Mixed Workload188

Finally, for the Mixed Workload, we extracted the write sets of Solana transactions and their189

corresponding gas expenditures. This workload is the most complex among the four, as190

it involves varying the length of the write-set, the access distribution of resources within191

CVIT 2016
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the write-set, and the transaction runtime. Due to the large number of blocks that are192

produced every day on Solana, we only queried a representative sample of 1000 blocks per193

day throughout 2022 and discarded the system maintenance transactions. The results are194

shown in Figure 1c. Analogous to the other workloads, we observe that a small number of195

resources make up a large percentage of the write accesses. Furthermore, we observe that196

most transactions access several resources and that the execution times are widely distributed.197

The access distribution of the resources results in critical paths taking up between 20 and198

60% of all transactions with an average of around 30%. This was calculated by comparing199

the total gas consumption for 1000 blocks with the combined gas cost of the longest path of200

dependent transactions within the same period. To make sure that the critical path in the201

benchmark approximates what we observed in the data, we adjusted the workload generation202

code such that the resource distribution, number of writes, and transaction length, on average203

result in a critical path of around 30%.204

Algorithm 3 Multi Resource Complex Runtime Smart Contract
1: resourcetable← ∅
2: procedure accessn(complexity, setofaddresses)
3: i← 0
4: for all addr ∈ setofaddresses do
5: i+ = 1
6: resourcetable[addr]+ = 1
7: end for
8: for j = i→ complexity do
9: setofaddresses[j%|setofaddresses|]+ = 1

10: end for
11: end procedure

The mixed workload actively accesses a range of resources a varying number of times205

to vary the smart contract runtime. The pseudocode for the smart contract is outlined in206

Algorithm 3. In a loop, we access the resource table and increment the value of each resource207

in the set of addresses at least once. Next, following the complexity parameter, we iterate an208

additional complexity − i times and access the addresses in the set of addresses uniformly.209

2.5 Summary210

With the help of the access distribution, we sample transactions from the respective workloads211

to generate the microbenchmarks. For example, if 10% of transactions in the workload access212

the same resource and the remaining 90% access independent resources, the microbenchmark213

reflects this distribution. As such, given the 10% example, the probability of having two214

transactions accessing the same resource back-to-back in the block is 1%. Note that, given our215

workload analysis, which shows that independent users regularly access the same resources,216

we believe this correctly reflects the average distribution even from a more fine-grained217

perspective.218

The benchmarking code and instructions are available at https://anonymous.4open.219

science/r/execution-engine-benchmark-C229. For each workload, we provide datasets220

to construct probability distributions, represented as sets in the form [1, 1, 1, 1, 10, 100], where221

each entry corresponds to a specific resource, and the value indicates the probability of that222

resource being accessed. To generate the workload, resources are selected iteratively based223

on their weighted probabilities within the distribution.224

Summarizing, our workload analysis shows that except for the peer-to-peer workload,225

all workloads are highly contended, validating our initial claim. Due to these dependencies,226

naively executing smart contracts in parallel will lead to high abort rates. Pythia leverages227

this and uses dependency hints to guide the parallel execution at stragglers and full nodes.228

https://anonymous.4open.science/r/execution-engine-benchmark-C229
https://anonymous.4open.science/r/execution-engine-benchmark-C229
https://anonymous.4open.science/r/execution-engine-benchmark-C229
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In the remainder of this paper, we discuss the design of Pythia that allows maximizing229

parallelism in this context.230

3 System Model231

Before delving into the design of Pythia, let’s first explore the underlying system model232

upon which we construct Pythia. We assume the existence of a set of N server processes233

p1, p2, ..., pN and a set of I client processes c1, c2, ..., cI communicating over a peer-to-peer234

network where clients and servers are identified with the help of asymmetric key pairs [16]235

and entities prove their identity by signing their respective transactions and messages.236

Furthermore, clients and servers communicate over perfect point-to-point channels achieved237

through mechanisms for message retransmissions, ordering, and deduplication. Thus, if a238

process pi sends a message mij to process pj , pj eventually receives mij .239

To deal with network failures, we assume that the network follows a partial synchrony240

model based on [9]. While, during periods of asynchrony, messages may be delayed for an241

arbitrary amount of time, we assume the existence of regular periods of stability, after some242

Global Stabilization Time (GST). During these periods, messages passed between two correct243

processes arrive within a known bound δ.244

Similar to the current state-of-the-art [7, 10], execution and consensus are split into245

modular layers that run in parallel such that execution does not happen on the critical path246

of consensus. Within the consensus layer, we treat consensus as a Black-Box, where each247

node receives an identical chain of blocks B1, B2, ..., Bi which is then executed sequentially.248

As long as the execution is strictly deterministic, this approach ensures that all server249

processes reach the same state. However, as execution does not occur on the critical path250

of consensus, client transactions cannot be fully validated before block inclusion. Thus, we251

assume the output of consensus to be a dirty-ledger [24] where the resulting blockchain might252

contain invalid transactions (e.g. lacking funds or gas). Nonetheless, as long as the executors253

receive the same blocks in the same order (guaranteed by consensus) and the output of the254

execution of the chain of blocks is strictly deterministic (i.e. all executors invalidate the same255

transactions), all executors produce the same output.256

To ensure determinism in the context of parallel execution, which is necessary to guarantee257

safety, we adopt a structure similar to BlockSTM [11], where transactions go through two258

distinct phases. In the execution phase, transactions are executed optimistically, and in259

the validation phase, the execution read and write sets are cross-validated with the help260

of a multi-version data structure. Validation and execution operate concurrently and if261

inconsistencies are detected transactions are rolled back and rescheduled for execution.262

Finally, we assume a Byzantine fault model inherited from the chosen consensus framework,263

with the number of faulty nodes bound by N = 3f + 1 as in most permissioned consensus264

algorithms. A given process is considered correct as long as it follows the protocol, otherwise,265

it is deemed faulty.266

4 Design Overview267

Drawing from our workload analysis and the insight into the impact of block composition on268

performance, we establish specific design objectives for Pythia. First, we want to speed269

up execution in a way that maximizes parallel execution and avoids frequent re-executions270

without relaxing safety. Second, we want stragglers and full nodes to be able to query and271

verify hints with minimal overhead.272

CVIT 2016



23:8 Pythia Supercharging Parallel Smart Contract Execution

In section 2 we show that the workloads we expect in a blockchain setting are highly273

contended, hence leveraging hints from the execution result can eliminate re-executions. In274

this section, we outline how hints are extracted and propagated and how nodes catch up275

with the help of the hints without sacrificing safety.276

4.1 Hint Extraction277

The optimistic parallel execution engine BlockSTM [11] tracks all transactions with the help278

of a multi-version data structure that records the read- and write-sets of all transactions.279

This allows BlockSTM to detect conflicts between concurrently executed transactions during280

run-time and enables it to initiate re-execution with fresher inputs when necessary.281

After deterministically finishing the execution of all transactions, the read and write-sets282

are extracted from the multi-version data structure as the resulting state from the parallel283

execution, alongside a footprint measured in gas that represents the execution complexity.284

This data is then stored alongside the block such that it can be sent to straggling nodes285

and full nodes on request. To preserve bandwidth and storage, this data can be compressed286

into solely tracking the closest dependency of a given transaction. I.e. if transaction B287

depends on A and transaction C depends on A and B, transaction C only has to declare its288

dependency on B, as B already declares its dependency on A.289

4.2 Hint Propagation and Catching Up290

In order to receive execution hints, full nodes or straggling nodes contact active nodes and291

request hints. Depending on how far behind a node is, it can obtain hints for several blocks292

or, if it is close to catching up, for a single block at a time. There are two ways how nodes293

can detect they are straggling. Either, by evaluating the progress of the other nodes in294

the network from the incoming execution state commit certificates as used in Aptos, or by295

evaluating the number of blocks the node has queued for execution. In either case, nodes296

can then request execution hints to speed up their execution to catch up with the remaining297

nodes in the system.298

Invalid hints might omit transaction dependencies leading to transaction re-execution, or299

include unnecessary dependencies leading to a sequential execution and harming performance.300

While Pythia still uses the validation step of BlockSTM to prevent this from impacting301

safety, incorrect hints could result in straggling nodes falling further behind, impacting the302

system latency and throughput significantly. However, as we prove in the following, as long303

as execution hints are signed by at least f + 1 nodes, they are guaranteed to be correct.304

▶ Theorem 1. Execution hints signed by f + 1 nodes are guaranteed to be correct given305

N = 3f + 1.306

Proof. The proof is straightforward. Given f + 1 execution hints for a given block, at least307

1 of the hints must’ve been provided by a correct node. Given the safety requirements of308

byzantine fault tolerant consensus [5], no two correct nodes will decide on conflicting values.309

As such, as long as the used consensus framework is safe, and correct nodes only execute310

blocks that were output by consensus, any set of execution hints signed by at least one honest311

node must be correct. ◀312

Nonetheless, as discussed in the introduction, based on the trust model of Bitcoin, we313

want the system to be able to recover from more severe failures where potentially more314

than f nodes are faulty and might provide invalid hints to straggling nodes. This is still315
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Algorithm 4 Transaction Scheduling
1: queue← ∅
2: priorityqueue← ∅
3: depgraph← ∅ ▷ Parent/Child Relationship between transactions
4: procedure schedule(txns)
5: for all tx ∈ txn do ▷ Iterate over transactions
6: if |depgraphtx.parents| ≤ 0 then
7: if |depgraphtx.children| ≤ 0 then
8: queue← tx
9: else

10: priorityqueue← tx
11: end if
12: else
13: critparent← ⊥
14: for all txp ∈ depgraphtx.parents do ▷ Iterate over parent transactions
15: if critparent = ⊥ ∨ txp.pathcost > critparent.pathcost then
16: critparent← txp ▷ Add as critical Parent
17: end if
18: end for
19: depgraphcritparent.primarychildren← tx
20: end if
21: end for
22: end procedure
23: procedure execute(tx)
24: for all txp ∈ depgraphtx.parents do ▷ Iterate over parent transactions
25: if txp.status ̸= Completed then
26: depgraphtxp .primarychildren← tx ▷ Add as critical Parent
27: return ▷ Don’t execute
28: end if
29: end for
30: tx.execute ▷ Execute Transaction
31: for all txc ∈ depgraphtx.primarychildren do ▷ Iterate over critical children
32: if |depgraphtxc .children| ≤ 0 then
33: queue← tx
34: else
35: priorityqueue← tx
36: end if
37: end for
38: end procedure

possible due to the validation step in the catch-up mode where nodes can detect invalid316

hints, broadcast a proof of misbehavior, and update their trust assumptions accordingly (e.g.317

ignore future execution hints from the f + 1 nodes that previously signed invalid hints). Due318

to this, as long as there is at least one honest non-straggling node every straggling node will319

eventually be able to connect to it and catch up using its hints.320

As hints are a result of the execution, stragglers and full nodes will always be behind the321

head of the chain by at least some ∆ = α + δ where α denounces the execution delay and δ322

the transmission delay. However, as hints can be obtained from a subset of correct nodes, δ323

can be kept minimal when hints are requested from geographically close nodes.324

4.3 Guided Parallel Execution325

Based on the dependency graph and the execution time of each transaction an execution326

schedule that avoids re-executions and prioritizes long chains of transactions can be built.327

The algorithm on how this is done is presented in Algorithm 4.328

In a nutshell, all the dependencies of transactions are checked and if a transaction has no329

parents, it can be scheduled for execution. If it has child transactions it gets into the priority330

pool, to prioritize executing long chains first, otherwise, the transaction gets added to the331

regular queue (Line 7).332

Given the path cost of each transaction, i.e. the sum of the cost of the longest path333

leading to a given transaction including the transaction’s own cost, the critical parent can334

be computed (i.e. the parent that will take the longest to finish executing). All children335
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of the critical parent are added as primary child to their parent (Line 19), and after the336

critical parent finishes execution, all child transactions can be scheduled for execution in the337

respective queues (Line 32).338

However, as this is done optimistically before any transaction is executed it is necessary339

to verify that all parent transactions already finished executing; if a parent that has not340

finished executing yet is found, the transaction is added as a child of this parent, and its341

execution is delayed (Line 26).342

For safety reasons, concurrent to execution, the validation procedure of BlockSTM [11] is343

followed. For each executed transaction, its read set is compared to the write sets of the344

preceding transactions to scan for potential conflicts or invalid hints. In case a conflict arises,345

the transaction is rescheduled for execution and the system falls back to BlockSTM for the346

remaining transactions and, the nodes that provided the hints are marked as untrustworthy.347

As validation reads from the multi-version data structure and does not require spawning a348

virtual machine, it takes a fraction of the time of the execution.349

As guided execution prevents frequent re-executions, in the presence of long critical paths350

of transactions, we expect many CPU cores to remain idle during parts of the execution.351

This opens a window for other optimizations such as leveraging the idle cores to verify352

transaction signatures instead of doing so on the critical path of execution. We outline these353

optimizations in Section 5.1.354

Finally, by re-using the same validation phase of BlockSTM, and, as such, only altering355

the execution order, Pythia also inherits the determinism guarantees of BlockSTM, and as356

such guarantees safety.357

5 Evaluation358

5.1 Implementation359

We implemented Pythia on top of BlockSTM [11] in Aptos [10] with two major alterations.360

First, we replaced the BlockSTM scheduler with our guided execution scheduler from361

Section 4.3 and second, we implemented the hint extraction from the execution results.362

Alongside this, we also added several optimizations that opened up due to the new363

scheduling approach. Traditionally, client transaction signatures are verified before handing364

the transaction to the execution engine. In Pythia, as the scheduler is aware of the365

dependency chains, we can leverage idle execution workers to verify client transaction366

signatures during execution, moving the signature verification away from the critical path.367

While BlockSTM is unaware of the transaction dependency graph, there are some sequential368

parts in the BlockSTM scheduler where idle workers could also be leveraged to verify client369

transactions. Therefore, to allow for a fair comparison we also implemented the signature370

verification optimization for BlockSTM.371

Furthermore, in Aptos, transaction execution is split into three phases: Prologue, the372

actual execution, and epilogue. For each part a virtual machine has to be instantiated, and,373

as such, for small transactions, each takes up roughly a third of the total execution time. As374

conflicts here only occur when the transaction is from the same user, BlockSTM almost fully375

parallelizes the prologue and epilogue, reducing the potential speedup Pythia can achieve376

in practice.377

To compensate for this, we added additional functionality to Pythia, to execute transac-378

tion prologues in parallel if they are the only transaction of a given client in the block, the379

first transaction of a given client in the block, or, the previous transaction of the client has380

been completed (prologue, execution, and epilogue).381
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Next, to take advantage of cache locality, when a worker thread schedules the next set of382

child transactions, it selects one destined for the priority queue and places it at the top of its383

local queue.384

Finally, we implemented the workloads mentioned in Section 2 in Move Contracts and385

added code to benchmark the execution engine with and without hints under the proposed386

workloads.387

5.2 Benchmark388

We executed our experiments on a Debian GNU/Linux 12 server with two AMD EPYC 7763389

64-Core Processors and 1024 GB of RAM. We created blocks of 10000 transactions with the390

help of our benchmarking suite and subsequently submitted them to the BlockSTM and391

Pythia executor. For each benchmark we created 16 different configurations; With and392

without the idle-worker signature verification for 4,8,12,16,20,24,28 and 32 worker threads.393

We executed each configuration a total of 10 times and then computed the average.394

Figure 2 shows the per-second throughput for all workloads for the baseline BlockSTM395

in gray and the guided parallel execution Pythia in black without signature validation396

(full line) and with idle-worker signature validation (dotted line). The y-axis depicts the397

throughput in transactions per second and the x-axis depicts the different configurations of398

worker threads from 4 to 32.399

We ordered the workloads by the level of contention, starting from the top with the P2P400

workload. Unsurprisingly, for both the P2P and NFT workloads, at lower levels of contention401

and small transactions, the speed-up of Pythia is minimal. However, Pythia still shows a402

small performance advantage for all configurations with the idle-worker signature verification.403

However, with increasing contention, the performance advantage becomes increasingly404

clear, especially when including the idle-worker signature verification. For all three remaining405

workloads, Pythia already shows a significant performance advantage at 4 worker threads406

which increases further with the number of worker threads. This is the case, as with high407

levels of contention BlockSTM spends an increasing amount of time re-executing and re-408
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validating transactions in a cascading fashion, which results in a performance drop with an409

increasing number of worker threads. As Pythia is aware of the dependency graph, it is410

able to stabilize the performance and use the idle time to verify transaction signatures and411

pre-execute the transaction prologue.412

While for the DEX workloads, most of the advantage at the lower number of worker413

threads comes from the idle-worker signature verification, when the execution is more414

computationally intensive like in the MIXED workload, the influence of the idle-worker415

signature verification is much smaller. This is the case as the accidental parallelization of416

the Prologue and Epilogue in BlockSTM plays a much smaller role, allowing Pythia to417

outperform BlockSTM even without this optimization significantly by 40% at 4 cores up to418

60% at 32 cores.419

As such, in any configuration, by using Pythia, straggling nodes are able to leverage420

hints to catch up to the remaining nodes. Furthermore, the more computationally intensive421

and contended the workloads are the more the speed-up performance increases. This is422

especially important as we expect nodes to be more likely to struggle to keep up when the423

workloads are more computationally intensive.424

6 Related Work425

We divide related work into two categories. Benchmarks for smart contract execution engines,426

and approaches related to catching up in the context of guided parallel execution.427

6.1 Execution Engine Benchmarks428

One of the most comprehensive benchmarks for blockchains is Diablo [12] which offers a full429

benchmark suite for blockchain evaluation. However, we identify several shortcomings. First,430

the workloads Diablo offers do not correspond to typical blockchain workloads (e.g., large431

data upload tasks or computationally intensive tasks). Furthermore, the chosen workloads432

also neither correspond to typical usage patterns in terms of user distribution nor regarding433

contention levels. This makes these workloads unsuitable for evaluating the practicability of434

parallel smart contract execution engines.435

While newer approaches such as [19] offer benchmarks based on real-world blockchain436

workloads, they lack a focus on evaluating parallel execution engines with realistic levels of437

contention (i.e., they only evaluate traditional blockchains with sequential execution).438

As such, in contrast to previous work, we provide a set of workloads that mirror real-439

world contention levels with the goal of evaluating the effectiveness of parallel smart contract440

execution engines. As most blockchains still use sequential execution, smart contracts are441

usually not written with concurrency in mind, introducing artificial contention that can be442

fixed on the application level. Therefore, we’ve created a set of smart contracts that only443

generate conflicts on the storage elements that can not be easily parallelized.444

Furthermore, instead of building a full benchmarking suite, we opted for providing a445

set of simple probability distributions that can be used alongside a set of simplified smart446

contracts to allow easy incorporation of our workloads in any benchmarking suite. This447

facilitates using our workloads to compare different types of smart contract platforms.448

6.2 Catching up under Parallel Execution449

Existing blockchains that implement parallel transaction execution, such as Aptos [10] or450

Sui [26] only allow stragglers to catch up with the help of signed execution results and451
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checkpoints that were signed by a significant percentage of the stake (i.e. typically f + 1452

or 2f + 1 out of N = 3f + 1). However, as already pointed out, this presents a relaxation453

of the security guarantees compared to Bitcoin from at least one honest to at least f + 1454

honest. This is the case as straggling validators and full nodes become unable to verify the455

correctness of the execution state, significantly reducing the number of nodes that can detect456

misconduct in the presence of large numbers of faulty nodes.457

Hint-driven execution is a common approach in the parallel execution space. Solana and458

Sui [27, 26] leverage client hints to build a parallel execution schedule preventing frequent459

re-executions at the cost of higher application development complexity and overly pessimistic460

hints reducing the parallelizability of the workload.461

Meanwhile, Polygon [25] and Dickerson et al. [8] have miners pre-execute the block on462

the critical path of consensus and leverage hints resulting from this process to speed up463

the actual execution. However, this comes at a large overhead as regardless of how fast the464

actual execution is, the optimistic execution on the critical path of consensus will slow down465

the system significantly. This makes matters worse for straggling validators as the large466

pre-execution overhead in combination with lagging behind makes it unfeasible to propose a467

block in the expected time frame. As a result, this further slows down the entire system.468

Therefore, to the best of our knowledge, Pythia is the first framework that allows469

straggling nodes to catch up in a modular parallel smart contract execution environment470

without relaxing the security guarantees and without introducing additional complexities471

for application developers. In addition to that, compared to existing hint-based solutions472

Pythia provides several novel strategies to maximize the throughput given the execution473

hints. First, to avoid long critical paths clogging up the systems, transactions with a chain474

of dependent transactions are executed with a higher priority. Furthermore, we leverage idle475

CPU cores during execution, resulting from the optimized schedule to verify client transaction476

signatures instead of verifying them on the critical path of execution.477

7 Conclusion478

In this work, we presented Pythia, a guided parallel execution engine that allows straggling479

nodes and full nodes to catch up without relaxing the security guarantees. Depending on the480

workload Pythia outperforms the optimistic execution engine by up to 60%.481

Furthermore, we created a set of realistic workloads based on real-world data to evaluate482

the effectiveness of parallel execution engines to allow comparing parallel execution engines of483

diverse eco-systems even if they use different virtual machines and programming languages.484

Furthermore, Pythia opens the doors for a range of future work such as evaluating its485

effectiveness in the context of parallel execution engines such as Solana [27] or Sui [26] where486

client hints might be overly pessimistic. Finally, our workload analysis has shown that the487

execution layer is still one of the major bottlenecks and hurdles to scaling blockchain systems,488

warranting further studies and novel approaches to further alleviate this bottleneck.489
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