
Unconditionally Safe Light Client

ABSTRACT
Blockchain applications often rely on lightweight clients to ac-
cess and verify on-chain data efficiently without the need to run
a resource-intensive full node. These light clients must maintain
robust security to protect the blockchain’s integrity for users of ap-
plications built upon it, achieving this with minimal resources and
without significant latency. Moreover, different applications have
varying security needs. This work focuses on addressing these two
key requirements in the context of Proof-of-Stake (PoS) blockchains
and identifying the fundamental cost-latency trade-offs to achieve
tailored, optimal security for each light client.

The key security guarantee of PoS blockchains is economic (im-
plied by the “stake"). In this paper we formalize this cryptoeconomic
security to light clients, ensuring that the cost of corrupting the
data provided to light clients must outweigh the potential profit,
thereby economically deterring malicious actors. We further intro-
duce “insured" cryptoeconomic security to light clients, providing
unconditional protection via the attribution of adversarial actions
and the consequent slashing of stakes. The divisible and fungible
nature of stake facilitates programmable security, allowing for cus-
tomization of the security level and insurance amount according to
the specific needs of different applications.

We implemented the protocols in less than 1000 lines of Solidity
and TypeScript code [2] and evaluated their gas cost, latency, and
the computational overhead. For example, for a transaction with
value of $32k, the light client can choose between zero cost with a
latency of 5 hours or instant confirmation with an insurance cost of
$7.45. Thus, the client can select the optimal point on the latency-
cost trade-off spectrum that best aligns with its needs. Light clients
require negligible storage and face minimal computational costs,
typically verifying only a few signatures (as few as one in most
cases).

1 INTRODUCTION
In PoS blockchains, validators secure the network by “locking" a
certain amount of stake (e.g., 32 ETH in Ethereum) to participate in
the consensus protocols. The inherent nature of security in these
PoS blockchains is economic: the greater the total stake, the more
cost or loss needed to attack the consensus protocol (e.g., one third
of the total stake, as in Ethereum PoS). Enforcing such costs relies
on a feature called accountable security [12, 14, 16, 35, 38, 40], which
allows for the confiscating or “slashing” of stakes if validators sign
conflicting states.

Full nodes in PoS blockchains play a critical role in maintaining
the blockchain’s integrity. They verify consensus signatures, repli-
cate a full copy of transaction history, and execute state transitions.
These tasks require significant resources and sophisticated hard-
ware. For example, operating a full node for Ethereum demands at
least 2TB of SSD storage [19]. In contrast, light clients prioritize
resource efficiency, making them suitable for applications that only
need to verify specific transactions and states, such as mobile wal-
lets and cross-chain bridges [20, 27]. Due to their limited resources,

light clients sacrifice some degree of independence and immediacy
in verifying blockchain security. They must communicate with full
nodes to achieve the same level of security, particularly across three
main areas: consensus (agreement on data inclusion), data avail-
ability (preventing censorship and downtime) and the validity of
state transitions (ensuring state consistency). This paper explores
the fundamental trade-offs between cost and latency of light clients
required to achieve optimal security. We specifically focus on light
clients that verify the consensus agreement and isolate the problem
from state transition validation and data availability check, which
are topics of independent interest [5, 29, 39, 44].

Bitcoin introduces Simple Payment Verification (SPV) as its light
client protocol. SPV enables light clients to verify the inclusion of
a transaction in a specific block using a Merkle proof and the block
header. Therefore, light clients need only download the block head-
ers of the blockchain and can verify transaction finality by checking
the depth of the block. In this context, the computational cost of
consensus verification is relatively low for light clients in Bitcoin.
However, in PoS blockchains like Ethereum, the consensus check
is inherently more complex by design. It involves maintaining the
whole validator set, tracking their stake changes and performing
many signature checks for the consensus protocol. On the other
hand, the security of PoW light clients relies on the assumption that
the majority of full nodes are honest. In contrast, PoS blockchains
derive their security economically through slashable stakes. The
system rely on the rationality of consensus participants, aiming to
ensure that the cost of attack exceeds any potential profit, which
may vary in different contexts. Therefore, designing a light client
protocol for PoS blockchains presents two essential requirements:
(1) addressing the high cost of consensus verification, and (2) en-
suring economic security and leveraging its dynamic nature.

To reduce the cost of verification, Ethereum’s current light client
protocol relies on a sync committee [21], composed of 512 randomly
selected Ethereum validators, each staking 32 non-slashable ETH.
However, this design exhibits significant security flaws. A dishon-
est supermajority within the sync committee could mislead light
clients to accept invalid data without facing any penalties. Even
if accountability were introduced through slashing, the combined
stake of the sync committee remains negligible in comparison to
the extensive Ethereum validator pool, which exceeds over 1 mil-
lion validators as of March 2024 [1]. Consequently, this approach
provides weak security for the light clients.

Furthermore, in the current design, light clients treat all transac-
tions, whether worth a million dollars or a hundred dollars, with the
same level of security. However, in the real world, security measures
are naturally tailored based on the value at risk. For example, banks
allocate more resources and scrutiny to safeguarding substantial de-
posits than they do for smaller checks. This principle should ideally
extend to blockchain transactions, where the security guarantee
provided by a light client should correspond to the transaction’s
value. For instance, if a light client is verifying the inclusion of
a $100 transaction, it should require authentication supported by



Table 1: Comparison of our designs LCeco and LCins with existing light client protocols. Computation refers to the number of signatures required to be
verified. For full PoS and sync committee, we assume all states are synchronized and only calculate the cost of verifying the consensus of a single block.
Storage here is only for the consensus and not for storing the entire blockchain. For LCeco, the latency is determined by the light client and typically spans a
few hours. The distribution of Ethereum transaction sizes indicates that over 85% of transactions are valued at less than 10 ETH [36], requiring only one data
provider with a 32 ETH stake to secure them. Therefore, we focus our calculations on scenarios that rely on a single data provider.𝑉 is the total number of
validators of PoS blockchain (𝑉 is greater than 1 million as of March 2024 for Ethereum[1]).

- Full PoS Sync Committee LCeco LCins
Computation 𝑉 /32 512 1 1

Storage 100MB 30KB <100B <100B
Latency 10 secs 1 sec 5 hours 2.8 ms
Security Economic Reputation-based Economic Insured

Programmability × × ✓ ✓

an amount of slashable stakes slightly higher than $100. In such a
scenario, a rational validator staking this amount would lack the
incentive to manipulate the data sent to that particular light client,
as the potential loss from being slashed would outweigh the gain
from the fraud.

In this paper, we decouple the security of the blockchain consen-
sus from the security provided to light clients for accessing on-chain
data. For light clients, there is no need to comprehensively verify
the consensus of the entire network. Instead, we apply the same
principles of economic security for PoS system to each light client
and introduce programmability into this security framework: we
ensure that the cost of corrupting a light client’s verification pro-
cess exceeds the potential profit from such corruption. This cost is
tailored to the specific security needs of light clients, akin to the
k-deep confirmation rule in Bitcoin. Consequently, each light client
can independently balance its security level against the associated
verification cost.

With security now programmable, individualized, and inherently
economic, we introduce insured security. Economic security already
guarantees that the stakes slashed from malicious validators always
exceeds the potential gains. Thus, even if validators behave irra-
tionally, the economic penalties are sufficient to cover any losses
incurred. Insured security is designed to provide additional finan-
cial protection in the event of security breaches. Before processing a
transaction, light clients are able to purchase insurance correspond-
ing to the transaction’s value. Validators involved in the light client
protocol are held accountable for their commitments: if they sign
incorrect data, they are penalized by having their stakes slashed,
and the insured amount is then refunded to the light client from
these funds.

Our contribution. In this paper, we propose a light client protocol
for PoS blockchains, denoted as LCeco, featuring programmable
economic security and optimal cost-efficiency. Its variant LCins
incorporates an insurance scheme to further provide unconditional
protection for adversarial actions. The system offers the following
advancements:

• Economic security. We define economic security for light
clients by making corruption economically infeasible for
validators. In this protocol, light clients who want to verify
specific on-chain states interact with a group of full nodes,
known as data providers. These data providers validate and
sign off on the legitimacy of the requested states, sending
their confirmations to the light clients. The light clients then

wait for some predetermined time to get ensured that the
data providers are not slashed and the provided data is cor-
rect. During this waiting period, a network of full nodes,
termed aswatcher network, actively monitors for potential in-
consistency between data providers’ responses and on-chain
data. This network guarantees that if any data provider signs
an incorrect proof, at least one watcher will detect this error
and alert the light client within the designated timeframe.
Through this system, the protocol effectively ensures that
the costs associated with misleading behavior exceed any
potential profits, thus promoting honesty through economic
incentives.

• On-demand, programmable security. Unlike traditional
PoS blockchains that offer a uniform security level, our proto-
col allows light clients to customize security measures based
on their specific application needs. Leveraging stake-based
voting, the group of data providers are chosen to ensure that
the cumulative stakes exceed the desired security threshold –
a minimum percentage of stake backing the data for specific
applications. This approach provides each application with
the granular control based on the risk assessments.

• Insured security. Our protocol further introduces an in-
sured security feature, enabling light clients to purchase
insurance against potential losses from adversarial actions.
This insurance scheme provides dual benefits: firstly, it al-
lows light clients to accept the data from providers immedi-
ately upon receipt, bypassing the waiting period. Secondly,
in the case of security attack, it ensures that light clients do
not incur financial losses. The insurance cost is calculated
based on the coverage duration, the value protected, and the
expected return rate for insurance stakers. Additionally, a
constant gas cost is incurred for the inclusion and execution
of the insurance payment transaction. The cost of insurance
across various coverage durations is illustrated in Figure 1.
This scheme provides compensation for damages, protect-
ing against irrational adversaries willing to incur significant
penalties.

• Optimal cost and latency. Our protocol not only achieves
programmable and optimal security guarantees but also sig-
nificantly reduces the computational costs associated with
consensus verification. Table 1 illustrates the performance
comparisons between various protocols. Our light client pro-
tocol with economic security optimizes both communication
and computational efforts, although it does increase latency
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Figure 1: Insurance cost vs. Transaction size (or covered value) for different
insurance duration

due to the optimistic verification path required to ensure
security. By introducing insurance, the protocol achieves
optimal performance across all metrics and offers enhanced
financial guarantees in the event of attacks.

Implementation and evaluations We implemented our nodes
in TypeScript using less than 700 lines of code, and the smart con-
tract in Solidity using approximately 300 lines of code. Our im-
plementation of the light client protocols is live on the Ethereum
testnet Sepolia. We assume multiple data providers registered on
the smart contract with 32 ETH worth of stake each, and the light
client is connected to one honest watcher. Then, assess the light
client design by the following metrics:

• Cost efficient: Light client incurs the cost of insurance if they
opt in for it. The cost is proportional to the level of desired
security for the light client.

• Fast confirmation: The fastest a light client can get confirma-
tion for the data is as soon as it is confirmed on Ethereum.
This instant confirmation is enabled for light clients using
the insurance.

• Light computation: The computation cost for our design is
minimal; few milliseconds for a light weight device.

The light client can select an optimal balance in the trade-off
between latency and cost. It has the option to either confirm the
inclusion of data after a delay at no cost, or pay a cost proportional to
the delay to achieve instant confirmation. For a transaction valued
at most $32k, we calculate the cost to be as In all cases, the light
client maintains security equivalent to that of a full node.

Organization In section 2, we provide background on Proof-of-
Stake (PoS) blockchains and light clients. Our model is introduced
in section 3. The protocol designs for economic security and insured
security are presented in sections 4 and 5, respectively, along with
their analyses. The evaluation of the protocol and details of our
implementation are discussed in section 6. Further discussion on
the system design is provided in section 7.

2 BACKGROUND AND RELATEDWORK
2.1 Background
In this section, we introduce and define key terminology essential
for understanding the protocol.

Ethereum uses Proof-of-Stake (PoS) as its consensus mechanism
after the upgrade in Sep 2022. PoS means that the growth of the
blockchain is guaranteed by participants who put some stake at
risk to be slashed in case of their misbehavior.

In the Ethereum network, validators stake 32 ETH in a contract
to be able to participate in the network, with a unique secret key
and a public key serving as their identity. A validator’s stake will
get destroyed if it acts dishonestly. Each validator is linked to a
node. Nodes can host various validators. Currently, Ethereum has
more than 800,000 validators but less than 6000 nodes.

Ethereum operates with two crucial intervals: the slot, 12 seconds
in duration, and the epoch, comprising 32 slots, equivalent to 6.4
minutes. One validator is randomly selected to be a block proposer
in every slot. Then, other validators attest to the proposed block
based on a random selection. Every active validator attests in every
epoch, but not in every slot. Dishonest attestations by a validator
leads to its stake being slashed.

A transaction gets finalized when it is part of a block that will
not get out of the canonical chain without a large amount of ETH
getting burned. On Ethereum, the first block in each epoch is a
checkpoint. Validators vote for pairs of checkpoints that they con-
sider to be valid. If a pair of checkpoints attracts votes representing
at least two-thirds of the total staked ETH, the later checkpoint
becomes justified, and the earlier checkpoint that was previously
justified becomes finalized.

Moreover, on Ethereum, the inclusion of a transaction can be
checked by verifying an inclusion proof. A block contains sev-
eral fields including a body which has an execution_payload.
It has a header called execution_payload_header that includes
transactions_root using which transaction inclusion checks can
be done efficiently.

Finally, light client is a form of client that interacts with the
blockchain while consuming minimal resources. They play a crucial
role in enabling lightweight access to blockchain data for various
applications and users.

2.2 Related Work
Techniques for a lightweight client to verify consensus were orig-
inally discussed in the Bitcoin paper [34], known as Simplified
Payment Verification (SPV). It allows clients to download only
block headers and verify the existence of transactions through SPV
proofs. While this method reduces the workload on the resource-
limited client [18, 24, 26], it necessitates a frequent online presence
to keep up with the main chain’s growth. Clients inactive for long
periods face the challenge of linearly verifying block headers upon
reactivation [32]. To address the limitations of SPV, innovations
like FlyClient [13] and Non-Interactive Proofs of Proof-of-Work
(NiPoPoW) [30] leverage the inherent authentication of a chain’s
few suffix blocks, enabling the proof of these blocks to clients at a
sublinear cost. However, their reliance on verifying PoWs restricts
their applicability to PoS consensus models. To address the security
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and efficiency challenges in PoS bootstrapping, PoPoS [3] intro-
duces a bisection game to effectively challenge adversarial Merkle
trees of PoS epochs. [42] proposes a composable solution to create
light clients for lazy blockchains [4, 6]. Though they achieve mini-
mal space and avoid requiring always-online clients to maintain
stake distributions, the issue of enabling clients to go offline with-
out incurring substantial costs for rejoining the network remains
unaddressed.

In popular Ethereumwallets like MetaMask, the consensus client
logic is handled by centralized infrastructure providers such as In-
fura [28]. These providers undoubtedly result in a lightweight and
efficient user experience. However, the centralization of such ser-
vices means that a compromised provider could potentially mislead
users by altering payment and balance details or by censoring trans-
actions. To improve security and accelerate bootstrapping, one of
the most popular adoptions in Ethereum is a sync committee [21],
which comprises 512 validators selected every 27 hours, to sign
block headers in the beacon chain. However, the lack of economic
penalties for misbehavior among committee members still raises
concerns about the reliability and security of this system. The in-
troduction of a generic superlight client [33] for permissionless
blockchains within a game-theoretic framework offers a new per-
spective. This model represents a special variant of multi-party
computation under rational settings. However, it does not provide
economic guarantees and fails to address the threat posed by mali-
cious, irrational data providers. In contrast, our light client focuses
on cryptoeconomic security. The concept of economic security
paired with an insurance scheme was first explored in recent work
named stakesure [17]. We apply this definition to establish a general
framework that provides economic security and insured security
that unconditionally protects the light client against malicious be-
haviors for PoS chains.

An alternative research approach focuses on the use of zero-
knowledge proofs to create succinct proofs [7]. For example,Mina [9,
23] and Plumo [25] effectively facilitate lightweight consensus ver-
ification through the use of recursive SNARK compositions [8] and
SNARK-based state transition proofs. Halo [10] improves Plumo
by removing the trusted setup. However, these methods impose a
considerable computational burden on block producers for proof
generation [15], and they do not address compensation for po-
tential losses experienced by light clients. In the context of other
PoS protocols like Tendermint [12] used in Cosmos, the role of
the light client is explored within their Interblockchain Communi-
cation (IBC) protocol[11, 27]. Notably, these implementations are
specific to their respective platforms and are not directly applicable
to Ethereum or various other PoS blockchains.

3 MODEL
This section introduces the model used in our protocol design.

Blockchain. We assume a programmable blockchain with deter-
ministic finalization rule for its blocks. On the Ethereum blockchain,
a block is finalized after at least two subsequent epochs come on
top of it, typically taking around 13 minutes.

Slashing smart contract. The protocol includes an on-chain
slashing contract adhering to standard smart contract abstractions.

It can access the block hash of the previous blocks in the blockchain.
All parties can send messages to this contract.

The parties involved in the system are: data providers, watchers
and the light client. The parties, their relation and connections
are shown in Figure 2. All parties are computationally bounded to
perform only polynomial-time computations.

Data providers. Data providers operate full nodes and keep track
of the latest state of the blockchain. They stake assets to provide
services to verify the validity of states requested by light clients.
The stakes are subject to potential slashing for misbehavior to
ensure accountability. Each data provider has a publicly known
cryptographic identity, referred to as a public key, which is linked
to their stake. They sign all data sent to light clients with the secret
key corresponding to their public key, enabling verification of data
origin and integrity. We use ⟨𝑚⟩𝑠𝑘 to represent a message𝑚 signed
by the data provider with secret key 𝑠𝑘 .

Data providers can join and stay in the system by maintaining a
minimum amount of stake. Moreover, they can freely exit, reclaim-
ing their remaining stake from the system after a withdrawal delay.
Data providers may act arbitrarily maliciously. All malicious data
providers are governed by one adversary and can coordinate at-
tacks. We assume the existence of at least one rational data provider
to ensure liveness.

Watchers. Watchers are full nodes connected to light clients to
assist in data verification. Anyone can become a watcher to profit
from monitoring and slashing misbehaving parties. Watchers re-
ceive data provided to the light clients by the data provider. When
a watcher receives invalid data signed by a data provider, it is
obligated to present on-chain evidence to slash the misbehaving
provider’s stake and alert the light client before the challenge period
ends. The challenge period (denoted by 𝑇𝑐𝑝 ) is a duration deter-
mined by light clients based on the value of the state it wants to
check. A longer challenge period increases the light client’s confi-
dence that an honest watcher has verified its provided data. The
challenge period has a maximum duration𝑚𝑎𝑥𝑇𝑐𝑝 determined by
the system when initializing the protocol. For simplicity, we assume
each light client connects to at least one honest watcher. Building
a watcher network within rational model is an independent topic
of interest [37].

Light client. Light clients are resource-constrained clients that
aim to verify the inclusion of a state or transaction on the blockchain
with minimal cost. Light clients are connected with a group of data
providers and watchers during the verification process. They can
not directly read data from blockchain, but can send transactions
to on-chain contracts through the network diffusion functionality.

Heavy checks. There exist a couple of ways for a client to access
the latest finalized state of the blockchain. These methods are heavy
in computation, but provide full node level security. For example,
to use the full node protocol or zero-knowledge proofs. We use
these methods during bootstrapping phase(one time event for each
light client) and in the dispute path of our protocol (happening
infrequently).

Network. The model assumes synchronous communication for all
parties, with maximum message delay Δ. The data providers form
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Figure 2: System participants and their interactions.

a peer-to-peer (p2p) network where they propagate data using a
gossip protocol. Light clients get connected to some data providers
as access points to the network to send their queries and receive
their response.

4 LIGHT CLIENTWITH ECONOMIC
SECURITY

4.1 Protocol Overview
We first introduce our light client protocol, LCeco, which enables
light clients to access on-chain data with economic security. A light
client queries specific data providers to verify the inclusion of a
state or transaction on the blockchain, referred to throughout the
paper as the target state. The process itself is known as the state
inclusion check. Data providers sign the block hash containing the
target state along with any necessary proofs, and then send this
information to the light client. The light client forwards all received
data to connected watchers and waits for the challenge period to
pass, during which it listens for alerts from watchers. If no alerts
are received, the light client verifies the signatures and the proof,
accepting the validity of the data. If watchers receive data from a
light client, they check it against their view of the blockchain. If
found inconsistency, the watchers slash the data provider on-chain
and alert the light client about the discrepancy. We will delve into
the details of each component’s design in the following sections.

4.2 Light Client
Before checking the state, the light client performs a “heavy check”
to bootstrap and obtain the latest set of data providers with their
stakes (see details for updating process in 4.3). Then the light client
decides on a challenge period duration (𝑇𝑐𝑝 ), which determines
how long to wait while listening for alerts from watchers before
accepting the state. The length of 𝑇𝑐𝑝 depends on the estimated
time it takes for an honest watcher to receive and verify the data
after it is forwarded by the light client. Extending the challenge
period enhances security but also increases the protocol’s latency.

Data Provider Light Client Watcher

Signed data and
proof of inclusion All the received data

from the data provider

Challenge
Period

Accept

Figure 3: The normal path for economic security. We have simplified this
example, by supposing the light client has chosen only one data provider.
Also, we only show the honest watcher here.

After bootstrapping, the light client selects a group of data
providers, ensuring the cumulative stakes exceed the value of the
requested state. A higher total stake increases the light client’s con-
fidence in the accuracy of the data. However, this also necessitates
more computations to verify proofs, presenting a trade-off that the
light client must carefully manage when choosing data providers.

Afterwards, the light client generates a request query(𝑛𝐵, ℎ𝑠 )
and sends it to the chosen data providers to verify that a target state
𝑠 has been included in a committed block 𝐵. This request includes
the block number 𝑛𝐵 of the block containing the target state and
the hash of the target state ℎ𝑠 .

After sending requests, the light client waits for responses from
the data providers. Upon receiving these responses, it forwards the
data to the connected watchers and then monitors for any alerts. If
no alerts are received once the challenge period elapses, the light
client verifies the signatures of the data providers and examines
the proof of state inclusion. Upon successful verification, the light
client deems the data trustworthy and proceeds to accept it. The
flow of normal path is depicted in Figure 3.

On the other hand, the light client may encounter the dispute
path when receiving alerts fromwatchers. In this case, it verifies the
alert, discards all data from the implicated data provider, and restarts
the protocol. Alerts include an inclusion proof for the slashing event.
The light client must perform a “heavy check” to ensure that the
slashing event actually occurs. Note that this intensive verification
is specific to the infrequent dispute path. The interactions during
the dispute resolution path are depicted in Figure 4.

4.3 Data Providers
Data providers respond to requests from light clients by signing
the target state if it has been included in a committed block. The
response is denoted as ⟨(ℎ𝐵, 𝜋𝑠 )⟩𝑠𝑘 , where ℎ𝐵 represents the hash
of the requested block 𝐵 and 𝜋𝑠 is the inclusion proof of state 𝑠 in
𝐵.
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Figure 4: The dispute resolution path for economic security. This simpli-
fied example assumes the light client has selected a single data provider
and depicts only the honest watcher.

Data providers are free to join and leave the system. They form
a set that gets updated upon execution of register and withdraw
requests. We define update epoch for data providers, each consisting
of 𝐵𝑢 blocks, a value set during protocol initialization. The duration
of update epoch, denoted by𝑇𝑢 (𝑇𝑢 = 𝐵𝑢 × avg(block interval time)
represents the minimum duration needed to process withdraw
requests. We ensure 𝑇𝑢 is significantly greater than the maximum
challenge period (𝑇𝑢 ≫𝑚𝑎𝑥𝑇𝑐𝑝 ). Withdraw requests made within
an update epoch take effect at the last block of the following epoch.
Below, we detail how each type of request is executed:

(1) Register: A new data provider who deposits more than the
minimum required stake is immediately added to the active
data provider list.

(2) Withdraw:When a data provider decides to exit the system,
their status immediately changes from active to leaving, and
they cease protocol engagement. The actual withdrawal of
their stake is only permitted after the end of the following
update epoch. An example of this process is illustrated in
Figure 5.

A data provider labeled as leaving may still be slashed for past
behavior but will no longer accept requests. This measure prevents
data providers from acting maliciously and quickly withdrawing
their stake to avoid penalties. The condition 𝑇𝑢 ≫𝑚𝑎𝑥𝑇𝑐𝑝 ensures
that all user challenge periods have expired for any requests made
to a data provider before they are permitted to withdraw their
stakes.

After bootstrapping, the light client acquires an initial list of data
providers. To stay updated, it must refresh this list each time it vali-
dates a block in a new update epoch, since the set of data providers
remains static throughout an update epoch. Lengthening the update
epoch delays stake withdrawal for stakers, impacting those wishing
to exit the system. However, this delay occurs only once for data
providers who choose to leave. The advantage of extending update
epochs is a reduction in the frequency of set transitions, which
simplifies the verification process for light clients. Additionally, this
updating mechanism enables light clients to predict the active data
provider set for future blocks, ensuring they experience no delays
due to changes in the network of data providers.

A light client that remains online to perform multiple state in-
clusion checks does not need to bootstrap for each verification.

Assume the blockchain is in update epoch 𝑖 , where 𝑖 ∈ N. If the
light client has recently completed an inclusion check, it already
has access to the active data provider set for epoch 𝑖 . To prepare for
epoch 𝑖 + 1, it needs only the register and withdraw requests from
epoch 𝑖 − 1 to be applied to the set from epoch 𝑖 . The light client
uses these requests as the target state in our protocol and queries
data providers to confirm their inclusion on the blockchain. Once
the maximum challenge period from the start of epoch 𝑖 elapses, all
checks for epoch 𝑖 − 1 are considered verified from the light client’s
perspective. Thus, the light client can anticipate the status of the
data provider set for epoch 𝑖 + 1 before the blockchain progresses
to that point, avoiding delays related to data providers entering or
exiting the network, and allowing it to select active data providers
in advance.

4.4 Watchers
Watchers receive signed data from light clients, originally provided
by data providers. They continuously verify that the signatures are
from active data providers and confirm whether the data has been
finalized on the blockchain.

If a signature fails to meet these criteria, the watcher sends a
transaction slash(𝜎, 𝑛𝐵, 𝑝𝑘) to the smart contract, providing the
data provider’s public key and the signature on the disputed data,
along with the block number. If the data is proven incorrect or lacks
finalization confirmation, the smart contract slashes the stakes of
the offending data provider.

If the data does not exist on the finalized chain, it may be due to
pending finalization or because another block for that number has
been finalized. The former can be confirmed via the blockchain’s
finalization rules, while the latter requires proving to the contract
that a different block has been finalized by the Ethereum consensus.
Under the assumption that Ethereum validators are honest and
do not endorse conflicting blocks, such proof confirms malicious
actions by the data provider, warranting a slash.

Following a successful slash, the watcher notifies the light client,
including proof of the slashing event’s inclusion on the blockchain.

Note that if the signature does not belong to any of the current
active data providers with stake at risk, the watcher cannot perform
an on-chain slashing. However, the watcher will promptly notify
the light client of this situation. This occurs if, after the light client
selects an active data provider to query and before the challenge
period concludes, the data provider’s entire stake is slashed for
another query, rendering them inactive. So, the watcher has to alert
the light client not to trust the data this data provider provides.
In such cases, the watcher is required to provide the light client
with proof of the recent slashing event that deactivated the data
provider. The light client then verifies the inclusion of this slashing
event before disregarding the data.

4.5 On-chain Smart Contract
An on-chain smart contract performs two key functions: first, it
holds the stakes of data providers and decides when to slash them;
second, it manages the entry and exit of data providers within the
system. The smart contract maintains a list of public keys for all
data providers, determining active and leaving data providers, along
with their corresponding stakes.
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Figure 5: This diagram illustrates the blockchain’s growth and details the process by which a data provider exits the protocol.

The slashing conditions are implemented in the contract to en-
able on-chain verification of disputes raised by watchers, thus elimi-
nating the need for trust in the watchers. Anyone can present proof
to dispute a data provider, and the function is open to be called
from arbitrary addresses.

To prove that a signed block hash does not correspond to a
finalized block, a watcher submits a conflicting finalized block hash
to the contract. The smart contract verifies if this conflicting block
hash is indeed finalized by checking its block number and matching
it with the recorded block hash on the blockchain. Additionally, the
contract assesses the finality rule of the blockchain for the block.
With this information, it can confirm the validity of the watcher’s
dispute and, if valid, slash the offending data provider.

4.6 Analysis
Safety. After receiving data from the data provider, the light client
waits for the challenge period to see if it receives any alerts from
the watchers. This guards against potential malicious behavior by
the data provider who might manipulate data despite the risk of
being slashed. If no alerts are received, the light client can trust the
data. However, if any alerts are received and verified, the light client
discards the data and restarts the process. The light client is secure
against both rational and irrational data providers because data
providers are economically disincentivized from deviating from the
protocol, and watchers are in place to alert the light clients about
any malicious data.

Note that our protocol aligns the light client with the state de-
rived from the Ethereum consensus mechanism, but it does not
safeguard against attacks targeting the consensus process itself. To
counter potential consensus attacks on Ethereum that might affect
the light client, an additional layer of verification through social
consensus can be implemented.

Full node level security. Our approach offers light clients the
same level of security guarantees that Ethereum PoS provides to

full nodes. On Ethereum, validators risk their stakes when they vote
on proposed blocks. Misbehaving validators face slashing penalties.
After a certain period, a block achieves finality, at which point full
nodes accept it permanently. Similarly, in our light client protocol,
data providers with stakes at risk can also be slashed for misbehav-
ior. They sign the blockchain data they assert to be finalized. Once
the challenge period (𝑇𝑐𝑝 ) has elapsed, the data is considered final-
ized from the light clients’ perspective and is accepted permanently.
In both scenarios, economic security is achieved.

Liveness. The system remains live as long as there is at least
one rational data provider in the network. In this context, "liveness"
means that no query goes unanswered indefinitely. Data providers
are motivated to participate and act honestly within the protocol
because their profits are proportional to their stake and the ser-
vices they provide to light clients. This incentivization ensures that
rational data providers stay engaged and responsive.

The rate at which light clients receive responses is at least equal
to the total throughput capacity of these rational data providers.
Consequently, when only a few rational data providers are present,
some light clients may experience delays in receiving responses.
However, since the total throughput of rational data providers is
non-zero, all light client requests will eventually be processed, thus
ensuring the system’s liveness.

Efficiency.We anticipate that Ethereum validators will be the
most willing parties to join as data provider nodes by re-staking.
Since they already need to run a full node, this protocol incurs very
minimal overhead in return for additional yield on top of what they
earn as Ethereum validators. Each validator stakes 32 ETH in the
Ethereum PoS. However, nodes running multiple validators can
re-stake in the light client protocol as one data provider, using a
single public key but providing the sum of the stakes for all the
validators they run.

Many small transactions that collectively sum up to 32 ETH can
be handled at the same time by a data provider re-staking as a
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single validator. Moreover, all those light clients only need to verify
a single signature, requiring minimal computational power and
allowing for quick processing.

Even larger transactions could be verified by a light client by only
checking a few signatures. It depends on how many data providers
can cover the value of the transaction by putting at risk their whole
staked values. The number of required signature verifications in-
creases when the light client wants to check transactions with a
very high value and needs to use data from multiple data providers.

This programmable security aligns with what we observe in the
real world, where many small transactions happening in banks or
institutions do not need extra care and can proceed quite quickly.
However, to move large amounts, additional time and care are
required.

Challenge period. From section 3, our security model assumes
the existence of at least one honest watcher who, during the chal-
lenge period𝑇𝑐𝑝 , will examine the data forwarded by the light client.
It’s important to note that 𝑇𝑐𝑝 is not a global parameter; instead, ;
instead, each light client sets their own 𝑇𝑐𝑝 based on their specific
security requirements. The longer the 𝑇𝑐𝑝 that a light client consid-
ers, the higher the likelihood that an honest watcher will review the
data received from the data provider(s). Beyond a specific duration,
increasing the challenge time no longer change the probability of
an honest watcher verifying the data significantly. We incorporate
this threshold in the protocol by setting a maximum value𝑚𝑎𝑥𝑇𝑐𝑝 .

5 LIGHT CLIENTWITH INSURED SECURITY
In this section, we enhance the protocol to better serve light clients
who require faster confirmation. To eliminate the waiting time
associated with the challenge period and to compensate affected
light clients connected to a malicious data provider, we introduce a
new concept: insured security. This approach assigns a portion of the
data providers’ staked value to each query from a light client in the
form of insurance. Then, should misbehavior occur, this insurance
mechanism guarantees that the light client is compensated from
the slashed staked value. This adaptation leads to the design of an
insured light client protocol, LCins, that offers unconditional safety.
We will elaborate on this protocol in this section.

5.1 Protocol Overview
The light client first calculates the maximum potential loss from be-
ing misinformed about the state of the blockchain. It then purchases
insurance for the determined amount and specifies a coverage du-
ration. The light client initiates a transaction to buy the insurance
and utilizes LCeco to check its finalization.

Next, the light client sets a local challenge period. The insurance
coverage duration can accommodate multiple inclusion checks. For
independent state inclusion checks, where the challenge periods do
not overlap, the insured amount only needs to cover the maximum
value of these checks. Conversely, if multiple inclusion checks
overlap within the same challenge period, the insured amount
should cover the total value of all checks.

In this design, stakes are specifically attributed to state check
queries from light clients. This ensures that the stakes are not
overloaded, and overloading refers to using a portion of the stake
to back multiple inclusion checks that together exceed the staked

value. This specific attribution allows for compensation to the light
client if the data provider misbehaves and is subsequently slashed,
ensuring economic safety even if data providers act unpredictably.

We will describe this process in more detail in the following
sections.

5.2 Light Client
The light client bootstraps as before, but this time, the active data
provider set will include an additional attribute: the “attributable”
stakes of each data provider, which represent the amount of stakes
that have not been assigned to any existing insured requests. Before
purchasing the insurance, the light client must determine two key
parameters: the coverage amount and its duration.

Coverage amount𝑉𝑐𝑜𝑣 . The light client calculates the maximum
potential profit that data providers could gain from corrupting the
data as the coverage amount𝑉𝑐𝑜𝑣 . Then to establish the desired level
of security, the light client select the set of data providers, specify
the proportion of their stakes needed for the insured request, whose
total attributable stakes exceed the coverage amount.

For instance, a low-value transaction inclusion check might be
sufficiently secured by a portion of the stake from a single data
provider who has staked 32 ETH. In contrast, a high-value bridge
transaction might require backing from 80% of the total assets
staked by multiple data providers. When a light client chooses to
rely on a stake from a single data provider, only one signature veri-
fication is necessary during the protocol execution while selecting
more data providers for the same coverage amount incur higher
verification cost. Therefore, it is generally preferable to select a
smaller number of data providers as long as their combined stakes
meet the necessary threshold.

Coverage duration 𝑇𝑐𝑜𝑣 . Next, the light client sets a challenge
period (𝑇𝑐𝑝 ) like before, which determines how long it will wait
for alerts from watchers. Unlike in LCeco where the light client
would wait for the entire challenge period before accepting the
target state, LCins provides immediate finality. That is, the light
client will accept the target state as soon as it receives responses
from data providers, but it will keep listening any potential alert
from watchers for 𝑇𝑐𝑝 .

After selecting 𝑇𝑐𝑝 , the light client can determine the coverage
duration 𝑇𝑐𝑜𝑣 for its insurance. For a single state inclusion check,
the light client needs to consider 𝑇𝑐𝑝 to ensure that any detected
misbehavior is covered during the insurance duration. Our protocol
also allows the light client to cover multiple checks within the
same insurance policy. In this case, setting 𝑇𝑐𝑜𝑣 must take into
account 𝑇𝑐𝑝 for different checks and the number of independent
state inclusion checks denoted by 𝑛. The total coverage duration
must extend beyond the point when 𝑇𝑐𝑝 has elapsed for each of
these checks to ensure full coverage of all checks.

Specifically, the coverage duration for a single transaction (𝑛 = 1)
needs to be set to cover the total time elapsed from the moment
the light client sends the insurance payment transaction to the
point when challenge period ends, which includes the sum of the
following parameters:

• Blockchain finality time (𝑇𝑓 𝑖𝑛 , for the insurance payment to
get finalized)
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• Locally selected challenge period (𝑇 0
𝑐𝑝 , to check the inclusion

of the insurance payment transaction)
• Another locally selected challenge period (𝑇 1

𝑐𝑝 , to check the
inclusion of the current transaction)

• Estimated communication delay times(Δ𝑐𝑜𝑚𝑚)
• Estimated computation and verification time (Δ𝑐𝑜𝑚𝑝 )

Now suppose there are multiple transaction inclusions to check;
the only additional delay is that the light client needs to wait for
multiple challenge periods to cover all the independent inclusion
checks. We denote the 𝑖-th check has challenge period 𝑇 𝑖

𝑐𝑝 . Then
the coverage duration is:

𝑇𝑐𝑜𝑣 ≥ 𝑇𝑓 𝑖𝑛 +
𝑛∑
𝑖=0

𝑇 𝑖
𝑐𝑝 + Δ𝑐𝑜𝑚𝑚 + Δ𝑐𝑜𝑚𝑝 (1)

From this point, we assume 𝑛 = 1 for simplicity without losing
generality. For larger 𝑛, the same procedure needs to get repeated
for each of the state inclusion checks.

Purchasing insurance. After selecting the parameters, the light
client makes an on-chain call to purchase insurance, specifying
the chosen data providers, their stake portions summing to the
predetermined threshold 𝑉𝑐𝑜𝑣 , and the desired coverage duration
𝑇𝑐𝑜𝑣 . The light client then waits for the blockchain’s finality time to
pass, and uses LCins to check the inclusion of the insurance payment
transaction. Note that the insurance purchasing transaction might
be reverted if there is insufficient available attributable stake. This
situation could arise if the combined queries from different light
clients exceed the available stake of a specific data provider in a
block, compared to the provider’s stake from the previous block.
The light client must verify whether the transaction was successful
or reverted.

After successfully purchasing insurance, the light client sends
queries to the selected data providers. The modification here is that
the light client needs to include the insurance ID 𝐼𝐷𝑖𝑛𝑠 , assigned by
the contract, in the query. The light client signs the query message
and sends it to the data providers. After receiving the data and
signatures from the providers, it forwards them to the watchers
as before. Finally, the light client verifies the signatures and the
proof of state inclusion. This time, there is no need to wait for the
challenge period, allowing the data to be accepted immediately
after signature verification. If the data providers deliver malicious
data, they will be slashed by the watchers. Consequently, the light
client will receive the insured amount from the smart contract. The
flow of interactions in this design is depicted in Figure 6.

5.3 Data Providers and Watchers
In this variant, watchers function the same as before and there
are only a few modifications for data providers. The execution of
withdraw request for the data providers differs which we explain
in details in section 5.4. In addition, in response to a query, the data
providers also include the insurance ID in the data they sign and
send to the light client.

5.4 On-chain Smart Contract
Two new functions are essential to the smart contract to facilitate
the insurance feature: buying insurance and claiming insurance.

Additionally, modifications are necessary for handling withdrawal
requests by data providers.

Buying insurance. When this function is invoked, it first val-
idates the inputs (𝑉𝑐𝑜𝑣 , 𝑇𝑐𝑜𝑣 and data providers’ public keys) by
checking the availability of attributable stakes from the selected
data providers. If the stakes are sufficient and available, the con-
tract allocates and locks them for the duration of the insurance,
rendering it unavailable for other queries until the insurance ex-
pires. The smart contract assigns a unique ID to each purchased
insurance, recording this ID along with the light client’s public key,
the involved data providers, and insurance parameters.

Claiming insurance. Watchers trigger this function by submit-
ting data signed by data providers that contradicts to on-chain
states, including the relevant insurance ID. Upon receipt, the con-
tract verifies the authenticity of the dispute and, if validated, slashes
the data providers’ stakes. It then allocates the slashed amount to
the light client associated with the indicated insurance ID, thus
compensating for any breach of security.

Withdrawal request. Data providers can exit the system by sub-
mitting a withdrawal request. Upon receipt of such a request, the
contract changes the provider’s status from "active" to "leaving" and
stops assigning new insurances to that provider’s stake. However,
under the insured protocol, portions of the provider’s stake may
be locked in active insurances that extend beyond the period of
the withdrawal request. The provider must continue to serve these
commitments until all associated insurances expire. Only after the
expiration of the last active insurance can the provider fully disen-
gage from the protocol, and the withdrawal of their stake can be
processed at the end of the subsequent update epoch.

5.5 Analysis

Scalability In this design, the capacity of the system is defined as
the sum of the total stakes of all rational data providers. They are the
ones providing service for the light clients and are incentivized to
do so. Since their stake gets attributed to the queries, the maximum
fully-covered insured amount can be the sum of the total stakes of
all rational data providers. Larger values for state checks cannot be
processed by the system, ensuring full coverage. Subsequently, the
maximum rate at which the system can insure value and support
inclusion checks is limited to this total amount for a single challenge
period.

Cost of insurance We observe a crucial relationship between the
challenge period (𝑇𝑐𝑝 ) the light client waits for in LCeco and the cost
the light client incurs in LCins for purchasing insurance. If the light
client prefers not to wait for the challenge period, it can opt to pay
for insurance instead, thereby bypassing the wait entirely. The cost
of this insurance is directly linked to the level of security the light
client requires, which in turn determines the challenge period that
the light client seeks to avoid. A higher security level necessitates
a longer challenge period, meaning that the data providers’ stakes
need to be locked for a longer duration. Consequently, the light
client must pay more for the cost of locking this collateral for the
extended period.
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Figure 6: The dispute resolution path for the insured security. We have simplified this example, by supposing the light client has chosen only one data
provider. Also, we only show the honest watcher here.

To evaluate the cost of insurance for light clients, let’s consider a
realistic example. Assume we have 𝑛 data providers recognized by
the smart contract as active for at least one block over the course of
a year, which consists of 𝐵 blocks. With an average block interval
time of 12 seconds on Ethereum, this gives us 𝐵 = 2, 628, 000 blocks
per year.

If a node exits and then rejoins the system, it is counted as two
separate data providers. Let 𝑆𝑖 denote the total staked value for the
𝑖-th data provider. In return for staking, data providers earn rewards,
representing the cost of their locked stakes. Assume an Annual
Percentage Rate (APY) of 6% for data providers, as determined by
market equilibrium.

We define𝑢 as the utilization ratio of the stakes, where utilization
refers to the proportion of the stake locked on the contract to hold
the corresponding data provider accountable for a specific query.
This stake is locked when a user purchases insurance for a desig-
nated duration. The parameter 𝑢 represents the average portion of
the total stake utilized by users at any given time throughout the
year:

𝑢 =

∑𝐵
𝑡=1 𝑢𝑡

𝐵
(2)

where

𝑢𝑡 =

∑
𝑖∈𝐷𝑃 (𝑏𝑡 ) 𝑆

𝑙𝑜𝑐𝑘
𝑖∑

𝑖∈𝐷𝑃 (𝑏𝑡 ) 𝑆𝑖
(3)

where 𝐷𝑃 (𝑏𝑡 ) is the set of data providers with active status on
the smart contract in block 𝑏𝑡 and 𝑆𝑙𝑜𝑐𝑘𝑖

represents the locked stake
of the 𝑖-th data provider. Now, we can define the cost of locking a
unit of stake for one block, 𝑐 , as follows:

𝑐 =
𝐴𝑃𝑌

𝐵𝑢
(4)

Light clients determine a coverage period 𝑇𝑐𝑜𝑣 and an insurance
value 𝑉𝑐𝑜𝑣 . The cost of insurance required to be paid to the data
providers is given by

𝑝𝑖𝑛𝑠 = 𝑐 ·𝑇𝑐𝑜𝑣 ·𝑉𝑐𝑜𝑣 (5)

where a lower bound for 𝑇𝑐𝑜𝑣 is determined from eq. (1).
Knowing this, for example, to check a single transaction valued at

100 ETH, with a 5-hour challenge time (1500 blocks), and assuming
𝑢 = 0.75, the cost of insurance would be:

𝑝𝑖𝑛𝑠 =
0.06

2628000 × 0.75
× 1500 × 100 = 0.004566 ETH (6)

This calculation does not include the gas cost of the transaction to
purchase the insurance, which we will evaluate in the experiments
(Section 6).

6 EVALUATION
The main objective of our experimental evaluations is to answer
the following questions for light clients:

• What is the computational overhead?
• What is the latency before the light client can confirm the
data?

• What is the incurred cost?
Our light client protocol’s smart contract, implemented in Solid-

ity with less than 300 lines of code, is deployed on the Ethereum
testnet, Sepolia [43], which simulates the consensus mechanism
of Ethereum. We developed the backend nodes in TypeScript, in-
cluding the light client (approximately 350 lines), data providers
(approximately 150 lines), and watcher nodes (approximately 200
lines). These nodes communicate over a local network via the HTTP
protocol.

In our scenario, we assume that every data provider registered
on the smart contract has staked 32 ETH, equivalent to an Ethereum
validator’s stake. Additionally, we have one light client aiming to
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Figure 7: Latency of verifying the data provider signatures for the light
client.

verify a transaction valued at less than 32 ETH. Consequently, this
light client needs to query only a single data provider. For simplicity,
the light client is connected to exactly one honest watcher.

We initially set up two Sepolia full nodes, each on an AWS Light-
sail instance with 16 GB RAM, 4 vCPUs, and 500 GB SSD. We use
Geth [22] as the execution client and Prysm [31] as the consensus
client. We then deploy the data provider and watcher nodes on sep-
arate instances, configuring their web3 provider to their respective
local full nodes. This setup allows the nodes to access the latest
blockchain data directly. The light client is deployed on a Lenovo
ThinkPad X1 Carbon Laptop, featuring an Intel Core i7 proces-
sor, 16 GB RAM, and a 512GB SSD, though the actual hardware
requirements are significantly lower.

Our experiments focus on both the economic security protocol
LCeco and the insured security protocol LCins, specifically verifying
the finalization of a block hash on the light client. We exclude
the time and computation required to verify the Merkle proof of
inclusion for its target state, as this is consistent across all light
client protocols.

Computation. The computation required by the light client is
consistent in both designs. In the economic design LCeco, the light
client begins verification after the challenge period elapses. In the
insured design LCins, verification starts once the inclusion of the
insurance payment transaction is confirmed. In both cases, the light
client performs one signature verification check on the block hash,
taking an order of milliseconds.

Latency. We varied transaction sizes in our experiments, requiring
signatures from 1 to 5 data providers, and measured the latency.
As depicted in Figure 7, the delay is only a few milliseconds. Con-
sequently, in our economic security design, latency is primarily
influenced by the challenge period, as computation and communica-
tion delays are minimal. The challenge period, configurable by the
light client, typically spans several hours but could be reduced to
minutes with a fast and reliable watcher network. In contrast, in in-
sured security scenarios, latency depends solely on the time needed
to complete signature verifications, which scales linearly with the
number of required provider signatures. Given that this process
usually takes only milliseconds, we achieve instant confirmation.

Cost. In order to provide economic security, the light client incurs
no additional costs in normal path. However, to provide insured
security, the cost for the light client to purchase insurance is divided

into two parts: the transaction gas fee and the insurance premium.
The transaction gas cost for calling buyInsurance() with inputs
from one data provider’s address is 200k. Additionally, there is the
cost of the insurance itself, as calculated in the previous section
for the expected stake return rate of 𝐴𝑃𝑌 = 6%. Given the current
ETH price of $3200 and gas cost of 9.377 Gwei, the transaction gas
fee amounts to $6. The insurance premium costs $1.45, totaling
$7.45 for buying insurance covering 10 ETH ($32k) for 1500 blocks
(approximately 5 hours). We repeat the experiment for different
transaction values and different number of data providers. Both the
transaction cost and the insurance premium cost increase with the
covered value. The results are summarized in Table 2.

We do not account for any gas costs for an honest watcher, as
we assume its honesty and diligence in checking the data. However,
in practice, using watcher services may incur costs comparable to
a token swap operation on Uniswap [37]. Additionally, the cost
incurred by a watcher for submitting a dispute on-chain is compen-
sated from the slashed stake of the data provider implicated in that
dispute.

7 DISCUSSION
7.1 Diverse Staking
So far, we have assumed that data providers stake or re-stake ETH.
This compels light clients to calculate the maximum loss value in
ETH, even if their loss is in another token whose value changes
rapidly in relation to ETH. This necessitates complex calculations
for buying insurance and imposes some risks for the light client
due to unpredictable market movements.

To address this, staking can be diversified in terms of the staked
token. Data providers can stake other widely used tokens like sta-
blecoins or wrapped Bitcoin, offering more options for light clients
to buy insurance. This also enables more data providers to join the
system as it allows them to be exposed to the price of their token
of choice while staking. However, there may still be light clients
using unsupported tokens or having more complex loss functions.

7.2 Delegation
As mentioned before, the preference is to have fewer data providers
with larger amounts of stake to expedite the verification process
for the light client. However, to allow data providers with less valu-
able assets to join the protocol, delegation can be employed. This
involves smaller data providers pooling their stake and delegat-
ing their data provision duties to a single node. This is not a new
concept and has been utilized in various blockchain contexts.

In delegation, the reward is distributed among all stakers propor-
tionally to their staked value, with some additional reward going
to the operator node. Delegation is also beneficial for users who
are unfamiliar with or lack access to the necessary resources for
running a data provider node but have assets they wish to stake.

7.3 Proposed Block Guarantee
So far, we have only discussed the guarantee that a block has been
finalized. On Ethereum, every proposed block will eventually be-
come either an uncle block or finalized. Another useful guarantee
that can be supported by this design is to ensure whether a block
has been proposed in the blockchain. It might not yet be finalized,

11



Table 2: Cost for applying each protocol for checking the inclusion of transactions with values 10 ETH($32k), 32 ETH($100k), 160 ETH($512k), and 320
ETH($1M) respectively for 1, 1, 5, and 10 providers (or multiple transactions summing up to these values). Computation is in terms of number of signature
checks.

LCeco LCins
Number of data providers 1 1 5 10 1 1 5 10

Cost $0 $0 $0 $0 $7.45 $10.68 $29.38 $52.76
Computation 1 1 5 10 1 1 5 10

Latency 5 hrs 5 hrs 5 hrs 5 hrs 2.8 ms 2.8 ms 13.2 ms 25.8 ms

but since finalization in Ethereum takes roughly 13 minutes, to
avoid this wait, a light client can use this new type of guarantee
to access the data faster. The block might not get finalized later,
but that happens with a very low probability. Such a guarantee is
useful for low-value transactions that require low latency.

To add this feature to the system, the light client needs to add a
flag to the query it sends to the data provider determining which
type of guarantee it wants. Then, the data providers also need to
include the same flag in their signed data so that when the watchers
provide it on-chain, the smart contract knows which guarantee to
check this data against.

The data provider that signs the block data will get slashed only
if the signed block header was not ever proposed in the blockchain.
To support this guarantee, we need to modify the design slightly.
For watchers to be able to provide a proof to the smart contract
that a data provider has signed incorrect data, they have to prove
to the contract that a certain block has not been proposed in the
blockchain at all. Meaning, it is neither finalized nor an uncle block.
This can be done optimistically, requiring the data providers to
provide inclusion proofs if disputed. The inclusion proofs can be
in form of zero-knowledge proofs to reduce the cost of on-chain
verification. Moreover, the watchers need to stake some assets in
the system, with each watcher staking an amount greater than the
gas fee of the call to provide the necessary proof in case of a dispute.
This way, the watchers do not have incentive to dispute falsely.

Data providers need to submit on-chain inclusion proofs in case
of a dispute. If the data provider has not misbehaved, there are
two possibilities: either the block has become finalized, or it has
become an uncle block. The proof for the latter case is to check the
inclusion of the block in the state root of the latest block header. For
the former, in addition to the inclusion proof, finality check is also
needed. Here, we leverage the fact that uncle blocks are included
in the state root commitment, as well as the finalized blocks.

7.4 Cost and Fee Management
The fee that the light clients pay for the insurance goes for the com-
pensation of the data providers. Data providers get compensated
proportional to the time and amount of the insurance they provide
for the light clients.

Watchers also get compensated for the services they provide.
They get a percentage of the slashed stake whenever they slash
a data provider successfully. This way they stay incentivized to
actively watch the data they receive from the light clients.

7.5 Data Availability
Since data providers operate full nodes and maintain the complete
blockchain data, they are capable of supporting not only consen-
sus verification services but also data availability checks. Previous
studies [5, 39, 44] have designed efficient data structures for light
nodes to verify data availability. Overall, there are two basic models:
a “pull” model in which light clients randomly sample data from
full nodes, and a “push” model in which block producer disperses
different data chunks to data providers. The “pull” model can be
directly adopted here under the same security assumption. Staked
data providers are responsible for answering sampling requests
from the light client. The light client then forwards data samples to
an honest validator node until the validator can either reconstruct
the block or provide an incorrect-coding proof. The fraud proof
can be submitted on-chain to penalize malicious data providers. A
related protocol [41] also examines the cryptoeconomic security
for the data availability committee. Our light client protocol further
offers insights into extending cryptoeconomic security to insured
security, utilizing penalties to compensate for losses caused by data
availability attacks.

8 CONCLUSION
In this paper, we have formalized the cryptoeconomic security for
light clients and introduced programmable security options tailored
to their needs. We presented two economically robust designs for
a light client, focusing on Ethereum PoS. The first design is more
cost-effective for the light client but introduces a higher latency.
The second design allows the light client to trust the data almost
instantaneously, albeit for a small fee. Importantly, in this design,
the light client is compensated if the provided data proves incor-
rect. This work introduces the first economically safe light client
protocol, serving as a pivotal component for various applications
that need to verify transaction inclusions to secure the finalization
of their payments. These received payments might be in exchange
for services or goods provided to their counterparts, or can be the
requests in applications like bridges that mint value upon verifying
the finalization of a payment. In all cases, the applications can enjoy
almost instant verification while being insured for the value of their
payments.
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