
Remote Staking with Economic Safety

ABSTRACT
Proof-of-stake (PoS) blockchains require validators to lock their

tokens as collateral, slashing these tokens if they are identified as

protocol violators. PoS chains have mostly been secured by their

native tokens. However, using only the native token upper-bounds

the value eligible for staking by the market capitalization of the

native token. In contrast, the remote staking of another crypto asset

from a provider chain provides an avenue to improve the consumer

chain’s economic security. In this paper, we present the first known

remote staking protocols with guaranteed optimal economic safety:

whenever there is a safety violation on the consumer chain, at least

one third of the provider’s stake securing the consumer chain is

slashed. To achieve this goal for a broad range of provider and

consumer chains, two independent contributions are made: 1) a

remote unbonding protocol that ensures slashing before the stake

is unbonded on the provider chain if there is safety violation on the

consumer chain; 2) a protocol to slash stake even without smart

contracts on the provider chain. The remote staking protocol is

analyzed and implemented in the case where the provider chain is

Bitcoin and the consumer chain is a Cosmos SDK chain running

the Tendermint consensus protocol.

1 INTRODUCTION
1.1 Proof-of-stake Security
A major trend of the blockchain ecosystem in the past few years is

the shift from proof-of-work (PoW) to proof-of-stake (PoS) based

sybil resistance mechanisms, as in Ethereum’s ‘Merge’ in 2022. Be-

sides lower energy usage, PoS blockchains provide the potential to

provably hold validators accountable and slash their stake when

they violate the protocol. Indeed, accountable safety [16], i.e. the

ability to identify the adversarial validators whenever there is a

safety violation, was the main motivation behind Ethereum’s mi-

gration to PoS [8]. It is also a central tenet of Tendermint [13, 15],

a widely used consensus protocol for building PoS blockchains

(e.g., Polygon, BNB Chain and over 60 application-specific chains in

the Cosmos ecosystem). With accountable safety, the staked assets

can be viewed as collateral to provide economic security to a PoS

blockchain. The larger the amount of staked assets on a chain, the

higher the economic security.

1.2 Native vs Remote Staking
PoS blockchains are typically secured by the native assets main-

tained on the blockchain. For example, Ethereum is secured by

ETH, Cosmos Hub is secured by ATOM, and BNB Chain is secured

by BNB. However, using only the native token upper-bounds the

economic security of the PoS chain by the market capitalization of

the token. Staking of remote crypto assets instead of or in addition to

the native assets provides an avenue to improve the chain’s security

by increasing the total staked value.

One approach is to first bridge the remote asset from its chain,

the provider chain, and then to use them to secure the PoS chain,

Authors are listed alphabetically.

the consumer chain. However, this is subject to the security risks

and capacity limitations of the existing bridging solutions such as

the use of trusted third parties [3] and sidechains [6, 38, 43] with

security vulnerabilities and the requirement of over-collateralized

vaults [7, 28].

Another emerging approach in the blockchain industry is remote

staking: the staked foreign assets stay on the provider chain, but is

locked in a smart bond contract designated for a preferred validator

of the consumer chain. This asset is slashed only if the validator

commits slashable offenses in its execution of the secured protocol

on the consumer chain. Remote staking was proposed to realize the

concept of mesh security for the Cosmos ecosystem [4, 9], where

the assets of one Cosmos chain are remote-staked to help secure

another Cosmos chain. This protocol was in turn inspired by Eigen-

layer’s Ethereum restaking concept [49], which uses the staked ETH

on Ethereum as collateral to secure middleware such as bridges,

data availability and oracle services. With Cosmos mesh security

and Ethereum restaking, a generalized form of remote staking is

emerging, where a crypto asset can be used to secure chains and

services other than its own chain.

1.3 Contributions
In this paper, we present the first known remote staking protocols

with optimal economic safety: whenever there is a safety violation

on the consumer chain, at least one third of the provider’s stake

securing the consumer chain is slashed
1
. Towards this goal, two

independent contributions are made:

• Secure unbonding: In standalone PoS chains with native stak-

ing, enforcing the slashing of adversarial validators is known

to be impossible without an external source of trust [48]. As

in long range posterior corruption attacks, the adversarial val-

idators can unbond before they can be slashed. [48] proposed

using a separate provider chain as a secure timestamping server

for checkpointing the consumer chain to achieve secure un-

bonding. As remote staking already incorporates a provider

chain, we use an analogous timestamping protocol to help iden-

tify the adversarial validators before they unbond. However,

in remote staking, the separation of the chain tracking the

stake (provider) and the chain validated by the staked entities

(consumer) introduces challenges unique to the remote staking

design, such as signalling the validator set changes happening

on the provider chain to the consumer chain and ensuring that

the adversarial validators cannot fork the consumer chain after

removing their stake from the provider chain.

• Dumb contracts for slashing: Provider chains like Ethereum
support Turing-complete smart contracts, which makes the

implementation of slashing on the provider chain technically

straightforward once the adversarial validators are identified.

However, there are other chains that do not support smart

contracts, the most important example being Bitcoin, an asset

worth over 1.3 trillion USD as of 15 April, 2024. Motivated by

1
Note that economic safety is stronger than accountable safety: not only adversarial

validators are identified, but they are actually slashed by the protocol.

1

the Bitcoin use case, the second main contribution of this work

is a secure remote staking protocol that does not require Turing-

complete smart contract capability on the provider chain and

can provide security to a consumer chain running any consen-

sus protocol.

The first contribution is relevant to all remote staking use cases,

regardless of whether the provider chain has a smart contract layer

or not. This contribution is highlighted in Section 4, where we

present a remote staking protocol with smart contract slashing on

the provider chain. The second contribution is specific to the case

when the provider chain has no smart contract layer. This contribu-

tion is highlighted in Section 5, where we present a remote staking

protocol for the case Bitcoin is the provider chain. In this setting,

we will show how slashing can be implemented using today’s Bit-

coin scripting language (in particular, only multi-signatures and

timelocks) without any upgrade of the existing Bitcoin protocol.

Our construction is modular, applicable to a broad range of consen-

sus protocols on the consumer chain, although for concreteness,

we will focus on the Tendermint protocol for our analysis and

implementation.

In this paper, for simplicity we focus on the case when the con-

sumer chain is entirely secured by assets on the remote provider

chain. Variation of the design incorporating both the remote and

the native asset in securing the consumer chain (dual staking) is

possible but is beyond the scope of this paper.

1.4 Security Properties
For economic safety, a PoS blockchain must not only identify the ad-

versarial validators responsible for a safety violation, but also slash

their stake afterwards. To capture this requirement, we strengthen

accountable safety [16, 47], i.e., the ability to identify adversarial

validators after a safety violation, to economic safety, the ability to

slash the provider chain tokens staked by the adversarial valida-

tors after a safety violation (cf. Def. 4). We say that the protocol

satisfies 1/3-economic safety if, when there are 𝑛 validators in total,

⌊𝑛/3⌋ adversarial validators can be slashed after a safety violation,

regardless of the total number of adversarial validators.

Theorem 1 (Informal, cf. Theorems 3, 8, 9). Assuming the

security of the provider chain (e.g., Bitcoin), both remote staking

protocols satisfy 1/3-economic safety.

Theorem 2 (Informal, cf. Theorems 4, 7, 10). Assuming the

security of the provider chain (e.g., Bitcoin), both remote staking pro-

tocols satisfy liveness with finite latency, if the fraction of adversarial

validators is less than 1/3 at all times.

A remote staking protocol satisfying 1/3-economic safety means

that no matter how many adversarial validators there are, at least

1/3 of them is guaranteed to be slashed after a safety violation.

On the other hand, no PoS blockchain secured only by its native

stake can slash the validators if the fraction of adversarial validators

exceeds 2/3 [23]. Indeed, by borrowing a sufficient amount of stake,

the adversary can temporarily control over 2/3 of the validator set,
gaining complete power over the PoS chain for some time. It can

then cause a safety violation, and subsequently withdraw its stake

to pay back its loan, thus violating safety without any financial

cost. This attack highlights the circularity in the security argument

Figure 1: Remote staking protocol with dumb contracts . Val-
idators lock their stake in a bond contract. They then be-
come eligible to run the consensus protocol of the consumer
chain. During this time, they sign the consumer blocks con-
firmed by the underlying consensus protocol with double-
authentication-preventing signatures (DAPS) as part of the
finality gadget. Hashes of the consumer blocks are periodi-
cally timestamped on Bitcoin along with the finality signa-
tures on them as part of the timestamping protocol.

for native staking: the chain where the native stake is locked is

the same as the chain secured by this stake. The remote staking

protocol overcomes the limitations of native staking by breaking

the circularity above, i.e., by separating the consumer chain secured

by the remote stake, and the provider chain maintaining this stake.

1.5 Protocol Overview
We highlight the main components of the remote staking protocol

with dumb contracts: (i) the timestamping protocol, (ii) the finality

gadget, and (iii) a bond contract on Bitcoin (Figure 1):

1.5.1 Timestamping protocol (Section 4 and 5.3). The timestamp-

ing protocol enables supporting an evolving validator set for both

remote staking solutions. Similar to the design of [48], it writes

the hashes of the PoS blocks onto the provider chain (e.g., Bitcoin)

along with the confirming signatures, to timestamp these blocks.

Then, the adversarial validators cannot cause a safety violation by

creating a conflicting chain after they unbond their stake (cf. long

range, posterior corruption attacks [11, 20, 21]); since the times-

tamps would signal which of the conflicting chains was built earlier.

The protocol also requires the timestamping of the provider chain

(e.g., Bitcoin) blocks within the consumer chain blocks; so that the

validators and clients can track the changes in the stake distribution

on the provider chain and verify the eligibility of the validator set

for each consumer block height.

1.5.2 Finality gadget (Section 5.1). The finality gadget adds an ex-

tra layer of confirmation called finalization to the consumer chain’s

consensus protocol. It requires each validator to sign a single block,

confirmed by the underlying consensus protocol, at each height

with a double-authentication-preventing signature (DAPS) [41, 45].

These signatures, called finality signatures, enable the extraction

2

Remote Staking with Economic Safety

of the private key of the validator if it equivocates, i.e., signs two

distinct consumer blocks at the same height. A block is considered

finalized if it gathers finality signatures from 2𝑓 + 1 or more val-

idators. Therefore, if two consumer blocks become finalized at the

same height (safety violation), i.e., gather 2𝑓 + 1 finality signatures,

the secret keys of at least 𝑓 + 1 adversarial validators who have

equivocated are exposed and thus, their stake can be burned.

When the consumer chain does not satisfy accountable safety,

the finality gadget can be used to enforce accountability of the

remote-staked validators regardless of whether the provider chain

has a smart contract layer or not. With smart contracts on the

provider chain, the finality signatures do not have to be DAPS,

since slashing would be done by the smart contract and does not

require the extraction of the private keys.

1.5.3 Bond contract (Section 5.2). Validators deposit their remote

tokens in a bond contract to participate in the consensus protocol.

In the case of a smart bond contract, the contract locks the stake

until sufficient time passes after an unbonding request. In the case

of Bitcoin as the provider chain, the contract ensures that before a

timeout, a validator can send its bitcoin only to an unspendable ad-

dress (i.e., can only burn/slash its token). Once the timeout expires,

the validator can retrieve (i.e., unbond) its token by sending it to

an address it controls. In the remote staking protocol, validators

must use the same signing keys for the finality signatures as for the

spending transactions sent to the bond contract. Therefore, after

a safety violation and before the timeout, anyone can burn the

stake of the adversarial validators whose secret keys have been

exposed, without the risk of frontrunning. The bond contract can

be instantiated with timelocks and covenants, a new primitive that

enables restricting the spending address of Bitcoin contracts, or

in lieu of covenants, with a covenant committee that emulates the

functionality of covenants with an external committee of signers

(i.e., a multi-signature).

1.6 Implementation
We report on a production-ready implementation of a remote (Bit-

coin) staking validator for a consumer chain running the Tender-

mint consensus protocol in Section 6. Our protocol does not require

changing the original validator code of the consensus protocol

besides sending finality signatures and monitoring Bitcoin. The

additional overhead of our finality gadget and the bond contract

for the consumer chain validators is a mere 179 MB of memory

and the usage of 10% of the core on a Xeon E5 2698 v4 CPU. With

minimal memory and CPU usage, our measurements demonstrate

the practicality of our construction.

While our implementation uses a consumer chain running the

Tendermint consensus protocol, the remote staking protocol can in

fact be combined with any consumer chain. Moreover, the overhead

due to our protocol on top of participating in the consumer chain’s

consensus remains the same, and our implementation remains un-

changed when ported to other chains.

2 RELATEDWORK
2.1 Accountability and Slashing
Accountable safety (also known as the forensic property [47]), i.e.,

the ability to identify a fraction of the adversarial validators in the

event of safety violations, is central to the design of PoS Ethereum [16,

17] and Tendermint [13, 14]. These protocols require their validators

to be backed by their native tokens as collateral; so that these tokens

can be slashed, i.e., taken away, if the validator is found responsible

for a safety violation. Token holders typically lock (i.e., bond) their

tokens and designate a particular validator to be supported by their

bonded tokens in a process called stake delegation [24, 42].

Note that identifying the adversarial validators might not neces-

sarily lead to their slashing. For instance, the adversarial validators

can create a consensus fork by first unbonding their stake, and then,

later in time, building a conflicting and finalized chain as if they

were part of the validator set. This is called a posterior corruption

attack, also known as the long range attack [11, 20, 21]. Although

these validators will be identified as adversarial, they cannot be

slashed after unbonding their stake. In this context, [48] proved

that in the absence of external trust assumptions, there are attacks,

where the adversarial validators cannot be identified before un-

bonding. Although thee clients can agree on the temporal order of

the confirmed PoS blocks via a notion of social consensus to miti-

gate these attacks, as social consensus is a slow process, this would

imply a long unbonding delay on the order of weeks.

To reduce the unbonding delay, [48] proposed using a separate

provider chain as a secure timestamping server for checkpointing

the confirmed PoS blocks. Through these timestamps, it provided

slashable safety, i.e., the ability to identify the adversarial valida-

tors in the event of safety violations, before they unbond their stake.

However, slashable safety does not imply the act of slashing either.

Indeed, in the case of a safety violation, more than 1/3 of the valida-
tors are already adversarial and can censor the evidence of protocol

violation from being included on the chain and enforcing the slash-

ing. In such cases, again, a complex social consensus process has to

happen off-chain so that the violators can be slashed and kicked out

of the validator set, and the remaining honest validators can restart

the chain. In contrast, our remote staking protocol does not suffer

from this issue as the remote stake resides on the provider chain,

not on the PoS consumer chain, and it is automatically slashed if

the safety of the consumer chain breaks down.

2.2 Finality Gadgets
Our finality gadget is an example of a broad class of protocols called

finality or accountability gadgets, which are instantiated on top of

existing consensus protocols to provide extra guarantees such as

safety under network partitions and accountable safety. An early

example of finality gadgets is Casper FFG used in Ethereum on

top of a dynamically available consensus protocol (LMD GHOST)

to checkpoint blocks, which constitute an accountably-safe prefix

of the Ethereum ledger [16, 17]. Other examples include [36, 46].

Our finality gadget also provides accountable safety to the under-

lying protocol, albeit it is much simpler as it is instantiated with

a fixed-sized validator set (without dynamic availability). A simi-

lar finality gadget was used in [33] with the purpose of enabling

clients to opt for higher safety resilience at the expense of reduced

3

liveness resilience. In contrast to these works, [30] explored remote

staking for consensus protocols without using a finality gadget.

For accountable safety, it directly relies on a quorum intersection

argument over the validators’ signatures on the consumer blocks.

However, without a view change mechanism, the construction gets

stuck when there is an adversarial block proposer, thus suffering

from liveness problems.

2.3 Accountable Assertions and DAPS
Accountable assertions were introduced to impose financial pun-

ishment by means of burning cryptocurrency in the event of equiv-

ocation such as double-spending [45]. They enable users to assert a

single statement in a given context using their Bitcoin secret keys,

which can then be verified with the corresponding public keys. If

a user asserts two different statements in the same context, then

its secret key can be obtained via a public and efficient algorithm

using the two assertions, which leads to the loss of the user’s funds

on Bitcoin. Accountable assertions were used to design payment

channels, where the payee is a distributed entity with asynchro-

nous communication among its distributed components. In this

case, if the payer commits a double-spend in its interaction with

different components, it can eventually be punished, as accountable

assertions do not require synchrony for leaking the secret keys of

the equivocating parties.

DAPS, proposed earlier, is a special type of accountable asser-

tion [41]. Potential use-cases include providing certificate author-

ities with cryptographic arguments to resist legal coercion and

discouraging equivocations by such binding authorities. Both ac-

countable assertions andDAPS are characterized by four algorithms:

a key generation algorithm, an assertion or signing (for DAPS)

algorithm, a verification algorithm and an extraction algorithm. Ac-

countable assertions are required to satisfy completeness, secrecy

for the secret key and extractability in the event that two distinct

statements are asserted for the same context (called subject in [41]).

DAPS are in addition required to have existential unforgeability,

which implies secrecy. Unlike accountable assertions, DAPS do not

require any non-extractable auxiliary secret information, i.e., the

whole secret signing key become extractable (cf. [45, Appendix

A] for comparison). DAPS were later generalized to lattice-based

predicate authentication preventing signatures (PAPS) that provide

extractability with general predicates [12].

Our work uses DAPS (rather than accountable assertions) for

finality signatures to ensure their existential unforgeability. With-

out existential unforgeability, there would be no guarantee that

the finality signatures cannot be forged by the adversary on ran-

dom blocks other than those confirmed by the consumer chain, an

event that can lead to a liveness violation. As [45] rely on third

parties to slash equivocating users’ tokens, it cannot guarantee

slashing if the adversarial users frontrun these third parties. In con-

trast, our remote protocol enforces the slashing of the equivocating

users’ tokens with the use of covenants (Section 2.4) or a covenant

committee (Section 5.2).

2.4 Covenants
Covenants are powerful primitives to express Bitcoin contracts. In

contrast to platforms like Ethereum, which are based on an accounts

model, Bitcoin is based on the ‘UTXO model’, which is inherently

stateless. When a transaction is executed, its input coins are de-

stroyed, and new output coins are created. In a regular transaction,

the owner of the input coin chooses which output coins are created.

Covenants limit this freedom and restrict a coin such that the owner

can send it only to a certain recipient or contract. This primitive

can be combined with other contracting primitives, such as time-

locks, to design stateful Bitcoin contracts. Covenants have been

discussed in the Bitcoin community since at least 2013 [31] and in

academic literature since 2016 [32]. In 2022, an attempt to activate

theOP_CHECKTEMPLATEVERIFY proposal (CTV) [27] that would

have enabled covenants failed to gain consensus [44] (cf. [10, 40]

for details). Despite this, there are proposals [19, 26] currently in

discussion that can be used to emulate covenants [39]. Covenants

enable designing a bond contract on Bitcoin that achieves economic

security without any trust assumption on third parties.

3 PRELIMINARIES
3.1 Model
3.1.1 Notation. Let 𝜅 ∈ N denote the security parameter. We say

that an event happens with negligible probability if its probability

is 𝑜 (1/poly(𝜅)). It happens with overwhelming probability (w.o.p.

for short) if it happens except with negligible probability.

3.1.2 Proof-of-stake consensus protocol. A proof-of-stake (PoS)

consensus (state machine replication or total order broadcast) pro-

tocol involves two types of nodes: validators and clients. Validators

receive transactions from the environment Z and communicate

with each other via ‘consensus messages’ (e.g., blocks, votes) to

impose a total order on these transactions. Clients collect consen-

sus messages from the validators, and upon gathering messages

from sufficiently many validators, invoke a confirmation rule to

output a sequence of confirmed transactions called the ledger. By

outputting the same ledgers the clients can obtain the same end

state after executing these transactions. The set of clients includes

honest validators
2
and wallets that can come online and query for

messages at arbitrary times.

The validator set of a PoS protocol can be static or dynamic. In the

case of a static validator set, there is a public-key infrastructure (PKI)

that assigns unique and publicly known identities to the validators,

and the validator set does not change over time. In the case of a

dynamic validator set, a node becomes eligible to participate in the

SMR protocol upon bonding some minimum amount of stake in the

protocol. A validator can also leave the validator set by unbonding

its stake, in which case, it is no longer treated as a validator. Our

goal is to analyze PoS consumer chains with a dynamic validator set.

Although validators can bond different amounts in return for more

power to influence the SMR protocol, in the subsequent sections,

we will represent each validator as a unit-stake validator; since

those with large stake can be represented as multiple unit-stake

validators controlled by the same entity.

3.1.3 Blocks and chains. Transactions are often batched into blocks

to ensure higher throughput. Then, the validators must ensure that

the clients agree on a sequence of blocks, since agreement on a block

2
An honest validator consists of (i) a validator algorithm exchanging the consensus

messages of the SMR protocol, and (ii) a client algorithm outputing a ledger.

4

Remote Staking with Economic Safety

sequence together with the ordering of the transactions within the

blocks determine a total order across the transactions. There is a

genesis block 𝐵0 that is common knowledge. Each block points to a

parent block via a collision-resistant hash function. A block 𝐵 is an

ancestor of 𝐵′, denoted by 𝐵′ ⪯ 𝐵, if 𝐵′ = 𝐵, or 𝐵 can be reached

from 𝐵′ via a path of parent pointers. Thus, each block 𝐵 identifies

a unique chain, denoted by C, that starts at the genesis block and

ends at 𝐵. Similarly, each chain is identified by a unique block at

the tip of the chain (when it is clear from the context, we will use

the notation 𝐵 to also denote the chain identified by the block 𝐵).

Two blocks 𝐵 and 𝐵′ (and their chains) are said to conflict if neither
𝐵 ⪯ 𝐵′ nor 𝐵′ ⪯ 𝐵.

3.1.4 Adversary. The adversaryA is a PPT algorithm that corrupts

a subset of the validators, hereafter called adversarial. It gains access

to the internal states of the corrupted validators and can cause them

to violate the SMR protocol in an arbitrary and coordinated fashion

(Byzantine faults). The remaining validators are called honest and

execute the prescribed protocol. We denote the maximum number

of adversarial validators by 𝑓 and assume that the total number of

validators is 𝑛 ≥ 3𝑓 + 1 at all times.

3.1.5 Networking. Time proceeds in discrete slots. Validators ex-

change messages with each other and the clients can receive mes-

sages from the validators through authenticated and reliable point-

to-point channels [29]. The adversary controls the timing of mes-

sage delivery and can peek into all messages before they are deliv-

ered. Upon coming online, clients receive all messages delivered to

them while asleep. We say that a validator broadcasts a message if

its intended recipients include all other validators and clients.

The network is partially synchronous [22]: the adversary has

total control over message delays until an adversarially determined,

finite global stabilization time (GST). After GST, the adversary has

to deliver the messages sent by any honest validators to all intended

recipients within a known Δ delay bound. Messages sent before

GST are delivered by time GST+Δ. GST can be a causal function of

the protocol randomness and is unknown to the clients and honest

validators.

3.1.6 Security. Let Cc𝑡 denote the confirmed chain output by a

client c at time 𝑡 .

Definition 1. We say that an SMR protocol is secure with latency

𝑇
cf

= poly(𝜆) if:
Safety: For any time slots 𝑡, 𝑡 ′ and clients c, c′, either Cc𝑡 ⪯ Cc

′
𝑡 ′ or

vice versa. For any client c, Cc𝑡 ⪯ Cc𝑡 ′ for all time slots 𝑡 and 𝑡 ′ ≥ 𝑡 .
Liveness: IfZ inputs a transaction tx to an honest validator3 at some

slot 𝑡 , then, tx ∈ Cc
𝑡 ′ for all 𝑡

′ ≥ max(GST, 𝑡) +𝑇
cf
and clients c.

A protocol is said to provide 𝑓s-safety if it satisfies safety w.o.p.

for all PPT A and when 𝑓 ≤ 𝑓s.

3.1.7 Accountable safety. In an accountably-safe protocol, when

a safety violation happens, the clients can call a forensic protocol

with the consensus messages they have observed so far, and obtain

a transferable proof identifying 𝑓𝑎 validators as protocol violators.

3
In the case of dynamic stake, the transaction is input to an honest validator that is

eligible to participate in the SMR protocol in its local view.

Definition 2 ([16, 34]). A protocol provides accountable safety

with resilience 𝑓𝑎 , if (i) when there is a safety violation, at least

𝑓𝑎 adversarial validators are identified by the forensic protocol as

protocol violators, and (ii) no honest validator is identified w.o.p. Such

a protocol is said to provide 𝑓𝑎-accountable-safety.

By definition, when safety of a protocol providing 𝑓𝑎-accountable-

safety is violated, the forensic protocol identifies at least 𝑓𝑎 adver-

sarial validators, which cannot happen if fewer than 𝑓𝑎 validators

are adversarial. As such, 𝑓𝑎-accountable-safety implies 𝑓𝑎 − 1-safety.

3.2 Double-authentication-preventing
Signatures

We next define the algorithms and properties that characterize the

double-authentication-preventing signatures (DAPS) [12, 41].

Definition 3 (Double-authentication-preventing signa-

tures (DAPS)). Algorithms for DAPS:

• sk

$← DAPS-KeyGen(1𝜅) : The key generation algorithm out-

puts a secret signing key.

• pk← DAPS-PK(sk) : The public key generation algorithm takes

a secret key and outputs a public verification key.

• 𝜎 $← DAPS-Sign(sk,𝑚, ct) : The signing algorithm is a proba-

bilistic algorithm that outputs a signature 𝜎 ∈ Σ given a secret

signing key sk, a message𝑚 ∈ M and a context ct ∈ C.
• {0, 1} ← DAPS-Ver(pk,𝑚, ct, 𝜎) : The verification algorithm is

a deterministic algorithm that outputs 1 if a given signature 𝜎 is

verified against a public verification key pk, a message𝑚 and a

context ct (0 otherwise).
• sk ← DAPS-Ext(pk,𝑚1, 𝜎1,𝑚2, 𝜎2, ct) : The extraction algo-

rithm is a probabilistic algorithm that outputs the secret signing

key sk of a validator (w.o.p.) given two distinct message-signature

pairs (𝑚1, 𝜎1) and (𝑚2, 𝜎2), where the signatures are valid under
the same context ct.

We separate the secret and public key generation to facilitate the

EXT-SCMA security property that is analogous to extractability [41,

45]. This is necessary for a DAPS scheme without a trusted setup,

when there may be many different secret signing keys (that are hard

to find) corresponding to a given public verification key. For the same

reason, [41] assumes the existence of an efficient algorithm akin to

our DAPS-PK(.) (without explicitly defining the algorithm), which

verifies that a given secret key sk is the key corresponding to a public

key pk. In turn, [45] assumes that for each pk, there is a unique sk.

Security of a DAPS scheme is characterized by three proper-

ties: correctness, EXT-SCMA security (extractability, or formally,

extractability under single chosen message attacks) and sEUF-CMA
security (existential unforgeability, or formally, strong existential

unforgeability under adaptive chosen message attacks). Intuitively,

correctness guarantees that a correctly generated signature always

passes verification. Existential unforgeability ensures that signa-

tures are, w.o.p., unforgeable when the secret key is unknown, even

after querying for multiple signatures. Finally, extractability guar-

antees that, w.o.p., two valid signatures on distinct messages under

the same key and context can be used to extract the secret key.

Formal definitions for these properties are stated in Appendix C.

5

3.3 The Provider Chain and Bitcoin
Let Bc

𝑡 denote the confirmed Bitcoin chain in a client c’s view at

time 𝑡 , i.e., the 𝑘-deep block and its prefix within the longest Bitcoin

chain held by c at time 𝑡 . When working with other provider chains

than Bitcoin, we will use Bc
𝑡 to denote the confirmed provider chain

in a client c’s view at time 𝑡 . We will denote the confirmed consumer

chain by Cc𝑡). We hereafter denote the consumer blocks by capital

𝐵 and the provider (e.g., Bitcoin) blocks by small 𝑏.

In all future sections, we assume that the provider chain’s consen-

sus protocol, in particular, Bitcoin with confirmation depth 𝑘 is safe

and live with some finite latency (w.o.p.). The following proposition

will be used in the description and analysis of the timestamping

protocol (Section 5.3).

Proposition 1. Suppose the provider chain’s consensus protocol

protocol is safe and live with latency 𝑇
cf
(w.o.p.). Then for any two

clients c1 and c2, and times 𝑡1 and 𝑡2, it holds that Bc1
𝑡1

and Bc2
𝑡2

are

consistent, and for any client c and times 𝑡1 and 𝑡2 ≥ 𝑡1, Bc
𝑡1
⪯ Bc

𝑡2
.

Moreover, there exists a parameter 𝑘𝑓 , as a function of 𝑘 , such that if a

transaction is input to the provider chain when a client c1’s confirmed

provider chain has height ℎ, then for any client c2, the transaction
appears in the confirmed provider chain of c2, before it reaches height
ℎ +𝑘𝑐 . If𝑇cf time passes as measured in wall clock time, there exists a

constant 𝑘𝑓 such that the confirmed provider chain grows by at most

𝑘𝑐 blocks in the view of any client.

When the provider chain is Bitcoin, Proposition 1 follows from

the security analysis in [25], where 𝑘 is the security parameter.

3.4 Tendermint
Tendermint is a PBFT-style [18] SMR protocol designed for the par-

tially synchronous network (cf. Appendix A for details). It proceeds

in rounds, each with a unique, known leader that proposes a block.

Suppose there are 𝑛 = 3𝑓 +1 active validators. Each honest validator
tracks a step variable denoting the stage of the protocol execution

within the current round. It can be one of Proposal, Prevote and
Precommit. All messages are signed by the broadcasting validator.

At the beginning of the Proposal step, the leader sends a Proposal
message, ⟨Proposal, ℎ, 𝑟, 𝑣, 𝑣𝑟 ⟩, (proposal for short) containing a

block 𝑣 of transactions. Here, ℎ and 𝑟 denote the leader’s current

height and round number respectively. Upon observing a proposal,

each validator enters the Prevote step and sends a Prevotemessage

⟨Prevote, ℎ, 𝑟, 𝑠⟩ (prevote) for either the proposed block (𝑠 = 𝑖𝑑 (𝑣)),
or a special nil value (𝑠 = ⊥), depending on the proposal and its

internal state. Here, 𝑖𝑑 (𝑣) represents a succinct, cryptographically
secure hash of the block. If the validator observes 2𝑓 +1 prevotes for
a block 𝑣 (or the nil value), it subsequently enters the Precommit
step and sends a Precommit message ⟨Precommit, ℎ, 𝑟, 𝑖𝑑 (𝑣)⟩ (pre-
commit) for that block or the nil value. Finally, a validator or client

confirms a block for height ℎ upon observing 2𝑓 + 1 precommits

with height ℎ for the block.

4 REMOTE STAKING PROTOCOLWITH
SMART CONTRACTS

There are two main challenges for any remote staking protocol

that aims to provide economic security for PoS consumer chains:

(i) ensuring agreement on the validator set for each height of the

consumer chain as stake shifts hand, and (ii) slashing the adver-

sarial validators on the provider chain after a safety violation on

the consumer chain. Our protocol relies on the timestamps of the

provider blocks within consumer blocks to ensure agreement on the

validator set; while using the timestamps of the consumer blocks

within provider blocks to help identify the adversarial validators

before they unbond. However, slashing the identified adversarial

stake becomes a challenge if the provider chain is limited in its

computational capabilities. For modularity, in this section, we con-

sider a provider chain with Turing-complete smart contracts, which

can slash any adversarial validator’s stake once it is identified. In

Section 5, we overcome the need to support smart contracts and

extend our design to Bitcoin as the provider chain.

Our remote staking protocol assumes a consumer chain that runs

a PBFT-style consensus protocol with accountable safety, where

consumer blocks are confirmed by a quorum of validator signatures

(e.g., PBFT [18], HotStuff [50]). Our design can also be extended

to consumer chains that lack accountable safety via the use of the

finality gadget in Section 5. We next provide an intuitive description

of the protocol. The complete description along with the algorithms

can be found in Appendix B.

4.1 Bonding, Unbonding and the Validator Set
To bond its stake, a validator locks it in a bond contract on the

provider chain via a bonding transaction. The stake remains locked

in the contract until an unbonding request by the validator is re-

ceived by the contract at some provider block 𝑏, and 𝑏 becomes

𝑘𝑢 blocks deep within the provider chain. Here, 𝑘𝑢 = 𝑂 (𝑘𝑓 + 𝑘𝑐)
is called the unbonding delay (cf. Section 3.3 for 𝑘𝑓 and 𝑘𝑐). Some

minimal unbonding delay is necessary to accommodate for delays

in sending messages to the provider chain, such as evidence of

protocol violation to slash the adversarial stake.

Proposer of a consumer block must include the hash of the high-

est confirmed provider block in its view within the consumer block.

Then, the validator set for a consumer chain height ℎ is determined

by the highest provider block 𝑏 whose hash is referred by the previ-

ously confirmed consumer blocks. This set consists of the validators

who have bonded their stake at the provider chain blocks preceding

𝑏 and have not sent an unbonding request received by the bond

contract by block 𝑏.

4.2 The Timestamping Protocol
Validators send periodic timestamps of the consumer chain to the

provider chain. These timestamps consist of the hash of the times-

tamped consumer block, a quorum of 2𝑓 + 1 signatures on this hash

that confirms the block (e.g., precommits), and the block’s height.

When there is a posterior corruption attack, PoS blocks with ear-

lier timestamps take precedence over those with latter timestamps.

Note that the timestamps can be frequent (e.g., every block), or at

an interval of𝑚 blocks for some𝑚 > 1. To mitigate the attacks

described below, the timestamping protocol imposes stopping rules:

4.2.1 Data availability attacks and stopping rule 1. If the clients
observe a timestamp on the provider chain such that the consumer

block 𝐵 of the timestamp or a block in 𝐵’s prefix is (partially or fully)

unavailable or not confirmed, they stop outputting new consumer

6

Remote Staking with Economic Safety

Figure 2: Illustration of the data availability attack and the safe-stop rule 1 (cf. Section 4.2.1). Yellow squares within the consumer
blocks represent the hashes of the provider blocks included within the consumer blocks. Similarly, blue squares within the
provider blocks represent the timestamps of the consumer blocks included within the provider blocks. Light blue blocks denote
unavailable consumer blocks.

blocks to prevent non-slashable safety violations. This is called safe-

stop rule 1. This so-called data availability attack was first discussed

in [48] and is illustrated in Fig. 2. In the figure, the provider block at

height ℎ denotes the highest provider block referred by the earlier

confirmed consumer blocks. Over 2/3 of the validators specified by

ℎ are adversarial and create two conflicting consumer blocks, 𝐵1
and 𝐵2. They subsequently send a timestamp to the provider chain

for 𝐵2, but initially keep both blocks private (Fig. 2-a). Then, the

adversary reveals 𝐵1 to a client c, but keeps 𝐵2 hidden (Fig. 2-b). At

this point, if c outputs 𝐵1 as part of its ledger, it would cause a safety
violation. This is because the adversary can reveal both blocks, after

unbonding its stake, to a late-coming client c′, which would output

𝐵2 instead of 𝐵1, as consumer blocks with earlier timestamps take

precedence over those with latter ones (Fig. 2-c). Moreover, the

adversary will not be slashed as it has already unbonded its stake.

Hence, to prevent non-slashable safety violations, upon observing a

data unavailable timestamp, clients stop outputting new consumer

blocks in their ledgers and send timestamps to the provider chain

for the latest confirmed provider blocks in their views.

4.2.2 Escaping stake attacks and block output rules. We next de-

scribe a series of escaping stake attacks that exploit the fact that the

stake is maintained on a different (provider) chain than the vali-

dated (consumer) chain. Again, suppose over 2/3 of the validators
specified by 𝑏 are adversarial. In the first attack, the adversarial

validators send an unbonding request to the provider chain (Fig. 3-

a), and once their request is granted, they create two conflicting

confirmed blocks 𝐵1 and 𝐵2 (Fig. 3-b). They show the blocks 𝐵1 and

𝐵2 to the clients c1 and c2 respectively, yet, keep block 𝐵2 hidden

from c1 and vice versa. At this point, if the clients choose to output

their respective blocks, then they risk a non-slashable safety viola-

tion, as the adversarial validators have unbonded (i.e., the stake has

escaped). In the second attack on Fig. 3-c, a late-coming client c′

outputs 𝐵2 upon observing its timestamp, thus conflicting with c1
that has output 𝐵1 before, after the adversarial stake has escaped.

To avoid these attacks, clients refuse to output blocks confirmed

by old validator sets determined by old provider chain blocks. In

these examples, theywould reject blocks𝐵1 and𝐵2 as their validator

sets were determined by a provider block, namely𝑏, that has become

too deep in the provider chain by the time the clients observe 𝐵1 and

𝐵2 (Fig. 3-b). Similarly, the clients would refuse to accept consumer

blocks with timestamps far removed on the provider chain from

the provider blocks that determined the validator set, i.e., 𝑐′ would
reject block 𝐵2 as its timestamp appears long after block 𝑏 (Fig. 3-c).

Indeed, if the majority of the validators were honest, a block and its

timestamp would appear in the clients’ views and on the provider

chain respectively, long before the provider chain grows by more

than 𝑘𝑢 blocks, the unbonding delay.

4.2.3 Mismatched timestamp attacks and stopping rule 2. In a mis-

matched timestamp attack, the adversary exploits the fact that the

bond contract cannot always detect the adversarial validators by

purely inspecting the timestamps on the provider chain. Suppose

over 2/3 of the validators specified by 𝑏 are adversarial and create

three conflicting consumer blocks, 𝐵1, 𝐵2 and 𝐵3. Here, the adver-

sary reveals 𝐵1 to a client c, but keeps 𝐵2 and 𝐵3 private (Fig. 4-a).
However, 𝐵3 is timestamped before 𝐵1 on the provider chain (Fig. 4-

b). Upon seeing this timestamps with a block (namely 𝐵3) that is

either unavailable in its view, or conflicting with 𝐵1, c urgently
sends a timestamp of 𝐵1 to the provider chain to notify the bond

contract and the future clients about a potential safety violation.

This timestamp for 𝐵1 appears on the provider chain within a few

blocks of the timestamp for 𝐵3. At this point, depending on the

design of the remote staking protocol, there are two possibilities:

1) Frequent timestamps: If we require every consumer chain

block to be timestamped in order, the adversary must first send a

timestamp of 𝐵2 to the bond contract before 𝐵3’s timestamp can

be accepted. Then, by sending a timestamp of 𝐵1, c would have

notified the bond contract about the adversarial validators that have

confirmed conflicting blocks with their signatures. Therefore, these

validators can be slashed by the contract before they unbond. How-

ever, this solution requires frequent timestamping, which might

not be suitable for data-limited provider chains such as Bitcoin.

2) Rare timestamps: If we do not require every consumer chain

block to be timestamped, then the adversary can directly timestamp

𝐵3 without sending a timestamp of 𝐵2 or any of the blocks in 𝐵3’s

prefix, which are kept hidden from c. In this case, the bond contract

cannot detect if 𝐵3 is conflicting with 𝐵1, and c cannot necessarily
give any evidence that 𝐵3’s timestamp is for a block conflicting

with 𝐵1. Thus, the adversarial validators will be allowed to unbond.

7

Figure 3: Illustration of the escaping stake attacks and the block output rules (cf. Section 4.2.2).

Figure 4: Illustration of the mismatched timestamp attack and the safe-stop rule 2 (cf. Section 4.2.3). Here 𝑘𝑓 denotes the
number of blocks that would be added to the provider chain during the time it takes for the timestamp of a consumer block to
be included in the provider chain.

Finally, suppose a late-coming client c′ observes the system af-

ter the adversary unbonded its stake (Fig. 4-c). At this point, the

adversary shows the previously unavailable blocks 𝐵2 and 𝐵3 to

c′. If c′ decides to output 𝐵2 and 𝐵3 instead of 𝐵1 as chains with

earlier timestamps take precedence, it would cause a non-slashable

safety violation by conflicting with c that has output 𝐵1. Therefore,
to prevent such safety violations, c′ does not output blocks whose
timestamp conflicts with another timestamp appearing within vicin-

ity (e.g., within 𝑘𝑓 blocks) of the original timestamp on the provider

chain. This is called safe-stop rule 2.

4.2.4 Slashing. In certain cases, clients send timestamps to the

provider chain in addition to the periodic timestamps to warn other

clients about a potential safety violation as discussed above. If there

were indeed a safety violation, these extra timestamps ensure the

identification and slashing of the adversarial validators by the bond

contract. Details about these conditions can be found in Appendix B.

4.3 Economic Security
Suppose there are 𝑛 ∈ {3𝑓 + 1, 3𝑓 + 2, 3𝑓 + 3} validators. Then,
equipped with the stopping rules, the remote staking protocol sat-

isfies economic safety with resilience 𝑓 + 1 (against all attacks):

Definition 4 (Economic Safety). A protocol provides economic

safety with resilience 𝑓𝑎 , if (i) when there is a safety violation, provider

chain stake of at least 𝑓𝑎 adversarial validators are slashed, and (ii)

no honest validator is ever slashed (w.o.p.). Such a protocol is said to

provide 𝑓𝑎-economic-safety.

Theorem 3 (Economic Safety). The remote staking protocol

satisfies 𝑓 + 1-economic safety.

Proof of Theorem 9 is given in Appendix G. It follows from a case-

by-case analysis, where after a safety violation, 𝑓 + 1 adversarial
validators’ stake is slashed in all possible cases.

Theorem 4 (Liveness). If the number of adversarial validators in

any window of provider blocks is less than or equal to 𝑓 , the remote

staking protocol satisfies liveness with finite latency.

Proof of Theorem 10 is given in Appendix H. It shows that when

there are sufficiently few adversarial validators, the timestamps on

the provider chain do not affect the consumer chain output by the

clients. Liveness then follows from the consumer chain’s liveness.

5 REMOTE STAKING PROTOCOLWITH
DUMB CONTRACTS

We now build a remote staking protocol with Bitcoin as the provider

chain and for concreteness, Tendermint as the consumer chain. In

lieu of a smart bond contract that can slash adversarial stake, we

design a novel slashing mechanism using DAPS, finality gadgets

and covenant emulation. We first show how DAPS can be used to

expose the secret signing keys of the adversarial validators that

8

Remote Staking with Economic Safety

violate the protocol rules to cause a safety violation (Section 5.1).We

then describe how to use the extracted keys of these validators to

financially punish them, thus achieve economic safety. Finally, we

combine the slashing mechanism with the protocol of Section 4 to

support changes in the stake distribution. We note that it is possible

to extend the protocol to consumer chains other than Tendermint

by using the finality gadget.

5.1 Tendermint with Finality Gadgets
We start with the observation that accountable safety of the con-

sumer chain is a prerequisite for our remote staking protocol (Sec-

tion 5.1.1), and Tendermint lacks accountable safety [14, Section

III-C] (cf. Appendix D for more detail). We then demonstrate how

Tendermint or any other consensus protocol can be made account-

able with our finality gadget, and describe a forensic protocol that

exposes the secret signing keys of the adversarial validators in the

event of a safety violation (Section 5.1.2).

5.1.1 Accountable safety is necessary for key extraction. As a build-
ing block towards our remote staking protocol, we require the

consumer chain to satisfy DAPS safety, which captures the ability

of the protocol to expose the secret signing keys of the adversarial

validators after a safety violation.

Definition 5 (DAPS safety). A protocol provides DAPS safety

with resilience 𝑓𝑎 , if (i) when there is a safety violation, the secret

signing keys of at least 𝑓𝑎 adversarial validators are extracted by an

efficient forensic protocol, and (ii) for any honest validator, given the

set 𝑄 of (message, context, signature) tuples created by the validator,

∀(ct,𝑚,𝑚′) such that (𝑚, ct, .) ∈ 𝑄 ∧ (𝑚′, ct, .) ∈ 𝑄 , it holds that
𝑚 = 𝑚′, i.e., the validator does not sign distinct messages with the

same context. Such a protocol is said to provide 𝑓𝑎-DAPS safety.

We observe that (𝑓 + 1)-DAPS safety (Definition 5) implies 𝑓 + 1-
accountable safety (Definition 2).

Theorem 5. An SMR protocol that provides (𝑓 + 1)-DAPS safety
also provides (𝑓 + 1)-accountable safety.

Proof. Suppose the protocol provides (𝑓 +1)-DAPS safety. Then,
in the event of a safety violation, the forensic protocol can extract

the secret signing keys of at least 𝑓 + 1 adversarial validators. More-

over, by Defs. 5-(ii) and 7, no PPT adversary can extract the secret

signing keys of any honest validator (w.o.p.). Hence, the set of sign-

ing keys exposed by the forensic protocol acts as a proof of protocol

violation identifying at least 𝑓 +1 adversarial validators, and no PPT
adversary can identify an honest validator as a protocol violator

by exposing its signing key (w.o.p.). Thus, the protocol provides

(𝑓 + 1)-accountable safety. □

5.1.2 Providing Tendermint with accountable safety and DAPS safety.
To make Tendermint accountably-safe, we replace the original con-

firmation rule of Tendermint with a novel finalization rule based on

finality signatures. Upon confirming a block 𝐵 for height ℎ within

the Tendermint protocol, i.e., outputting decision[ℎ] = 𝐵 [15, Al-

gorithm 1, line 49], each honest validator sends a height ℎ finality

signature 𝜎ℎ,𝐵 for block 𝐵, if it had not already sent a height ℎ

finality signature (Alg. 1). Each finality signature 𝜎ℎ,𝐵 by a valida-

tor val is a DAPS created with the secret signing key skval of the

validator on the message 𝑖𝑑 (𝐵) with context ℎ, where 𝑖𝑑 (.) is a
unique identifier for the block 𝐵 (e.g., a collision-resistant hash):

𝜎ℎ,𝐵 = DAPS-Sign(skval, 𝑖𝑑 (𝐵), ℎ) (it can be verified with the cor-

responding public verification key pkval = DAPS-PK(skval)). In
other words, finality signatures are DAPS with a message space of

hash 𝑖𝑑 values and a context space of heights ℎ ∈ {0, 1, . . .}. Other
signatures used by Tendermint need not be DAPS and can be of

any type. For consistency with the Tendermint notation, we de-

note a height ℎ finality signature for a block 𝐵 by ⟨Final, ℎ, 𝑖𝑑 (𝐵)⟩.
An honest validator sends a height ℎ finality signatures only after

sending finality signatures for the previous heights 1, . . . , ℎ − 1. A

Algorithm 1 A validator val’s execution of the finality gadget. The

function Broadcast broadcasts the provided signature and the

messages. Here, message𝑚 and a signature on it by the validator is

denoted by ⟨𝑚⟩val. Each validator keeps track of the latest height
for which a finality signature was broadcast.

1: height← 0

2: upon decision[ℎ] ⊲ A block is confirmed at height ℎ.

3: if ℎ = height + 1 then
4: Broadcast ⟨Final, ℎ, 𝑖𝑑 (decision[ℎ]) ⟩val
5: height← height + 1
6: end if
7: end upon

client finalizes a block 𝐵 at height ℎ upon observing a quorum of

2𝑓 + 1 unique height ℎ finality signatures for block 𝐵, and after it

has finalized blocks for all previous heights (unless the client has

previously finalized a block conflicting with 𝐵, cf. Alg. 2).

Algorithm 2 The finalization algorithm run by client c of Tender-
mint augmented with the finality gadget. The inputs T and sigs
denote the new blocks and finality signatures downloaded by the

client c from the network. The input C denotes the chain of blocks

previously finalized by c (C = 𝐵0, the genesis block, if no block

has been finalized yet). The function GetBlocks(T) returns the
sequence of blocks within T in increasing order of heights, where

ties can be broken arbitrarily. Height of a block 𝐵 is denoted by |𝐵 |.
The algorithm returns a chain of finalized blocks. By construction,

all finalized blocks are valid.

1: function OutputChain(T, sigs, C)
2: for 𝐵 = 𝐵1, . . . , 𝐵ℎ ←− GetBlocks(T) do
3: if |𝐵 | = | C |+1 ∧ C ⪯ 𝐵 ∧ ∃(2𝑓 +1) ⟨Final, |𝐵 |, 𝑖𝑑 (𝐵) ⟩ ∈ sigs

then ⊲ If ∃ 2𝑓 + 1 signatures by the validator set for height |𝐵 |
4: C ← C ∥ 𝐵
5: end if
6: end for
7: return C
8: end function

The forensic protocol uses a single condition to identify the ad-

versarial validators, and it is satisfied by at least 𝑓 + 1 validators
in the event of a safety violation (and no honest validator under

any circumstances). It identifies a validator as a protocol violator

and returns its secret signing key upon receiving two finality sig-

natures created by the validator for the same height, i.e., context,

but different blocks, i.e., messages (Alg. 3).

9

Algorithm 3 The condition checked by the forensic protocol for

key extraction.

1: function Key-Extract(signatures)

2: height← 0

3: upon ⟨Final, ℎ, 𝑖𝑑 (𝐵′) ⟩val ∧ ⟨Final, ℎ, 𝑖𝑑 (𝐵) ⟩val ∧ 𝐵 ≠ 𝐵′

4: Identify val as a protocol violator
5: 𝜎 ← ⟨Final, ℎ, 𝑖𝑑 (𝐵) ⟩
6: 𝜎 ′ ← ⟨Final, ℎ, 𝑖𝑑 (𝐵′) ⟩
7: skval ← DAPS-Ext(pkval, 𝑖𝑑 (𝐵), 𝜎, 𝑖𝑑 (𝐵′), 𝜎 ′, ℎ)
8: end upon
9: return skval
10: end function

We can finally prove the DAPS safety and liveness of the Ten-

dermint protocol enhanced with the finality signatures.

Theorem 6 (DAPS Safety). Tendermint with the finality gadget

satisfies (𝑓 + 1)-DAPS safety.

This theorem holds as long as the clients agree on the validator

set for each height, which is ensured by the protocol in Section 4.

Proof. Suppose the clients c1 and c2 finalized two conflicting

chains. Then, there must be an earliest height ℎ, at which they

finalized two conflicting blocks, 𝐵1 and 𝐵2 respectively. Then, c1
and c2 must have respectively observed two quorums of 2𝑓 + 1
height ℎ finality signatures ⟨Final, ℎ, 𝑖𝑑 (𝐵1)⟩ and ⟨Final, ℎ, 𝑖𝑑 (𝐵2)⟩
for 𝐵1 and 𝐵2. Upon obtaining the two quorums from the clients

c1 and c2, the forensic protocol identifies the 𝑓 + 1 validators at

the intersection of the two quorums as protocol violators since

they have satisfied the condition in Alg. 3. By the extractability

property of DAPS (Def. 8), the forensic protocol can extract their

secret signing keys (w.o.p.). Morever, since honest validators send

at most one finality signature per height, for any honest validator,

given the set𝑄 of message, height, signature tuples returned by the

validator, ∀(ℎ, 𝐵, 𝐵′) such that (𝑖𝑑 (𝐵), ℎ, .) ∈ 𝑄 ∧ (𝑖𝑑 (𝐵′), ℎ, .) ∈ 𝑄 ,
it holds that 𝑖𝑑 (𝐵) = 𝑖𝑑 (𝐵′). Thus, Tendermint with the finality

gadget satisfies (𝑓 + 1)-DAPS safety. □

Corollary 1. Tendermint with the finality gadget satisfies 𝑓 + 1-
accountable safety.

Corollary 1 follows from Theorem 6.

Although finality signatures ensure accountable safety and key

extraction for the adversarial validators identified as protocol viola-

tors, they do so by imposing a stronger so-called finality condition,

i.e., the existence of 2𝑓 + 1 finality signatures by the validators, as

opposed to the original confirmation (decision) rule of Tendermint.

We must thus ensure that the finality gadget retains the liveness of

the Tendermint protocol under honest supermajority.

Theorem 7 (Liveness). If the number of adversarial validators is

less than or equal to 𝑓 , Tendermint with the finality gadget satisfies

safety and after GST, liveness with finite latency (w.o.p.).

Proof. Let Cval𝑡 denote the sequence of Tendermint blocks con-

firmed (decided) by an honest validator val following the original
confirmation rule of Tendermint [15, Algorithm 1, line 49]. Note

that the Tendermint protocol code executed by the honest valida-

tors is not affected by the finality gadget. Thus, when the number of

adversarial validators is less than or equal to 𝑓 , Tendermint satisfies

agreement, validity, and after GST, termination by [15, Lemmas 3, 4,

7]. This implies that for all honest validators val and val′ and times

𝑡 and 𝑡 ′, (i) Cval𝑡 ⪯ Cval′
𝑡 ′ or vice versa, (ii) if a block 𝐵 appears in

Cval𝑡 at height ℎ at some time 𝑡 , then 𝐵 appears within Cval′
𝑡 ′ at the

same height by time 𝑡 ′ = max(𝑡,GST) + Δ, (iii) these chains satisfy
liveness per Definition 1. By property (i), for all times 𝑡 and honest

validators val, Cval𝑡 ⪯ C𝑡 = ∪honest val′Cval
′

𝑡 , and for all times 𝑡 and

𝑡 ′ > 𝑡 , C𝑡 ⪯ C𝑡 ′ . Thus, if a block at height ℎ conflicts with C𝑡 at
some time 𝑡 , it eventually conflicts with all height ℎ blocks at the

honest validator val’s chains Cval, and vice versa. Therefore, by

Alg. 1, an honest validator sends a finality signature for each block

in C𝑡 by time 𝑡 ′ = max(𝑡,GST) + Δ, and only for the blocks within

Cval𝑡 by time 𝑡 ′. Then, by the bound on the number of adversarial

validators, each block 𝐵 ∈ C𝑡 receives 2𝑓 + 1 finality signatures

by round max(𝑡,GST) + Δ, which are observed by all clients at all

times 𝑡 ′ ≥ max(𝑡,GST) + 2Δ, i.e., all clients finalize the blocks in
C𝑡 by max(𝑡,GST) + 2Δ.

Finally, by (ii) and (iii), any transaction tx input to an hon-

est validator at some time 𝑡 appears in C𝑡 ′ for all rounds 𝑡 ′ ≥
max(𝑡,GST) +𝑇

cf
+ Δ. Hence, tx appears in all finalized chains Cc

𝑡 ′

for all clients c and times 𝑡 ′ ≥ max(𝑡,GST) +𝑇
cf
+ 2Δ, concluding

the liveness argument. □

5.1.3 Performance. Each validator has to use a single DAPS per

height while creating the finality signature at that height. This

implies a linear communication complexity for the DAPS in the

number of heights and validators, which is a small overhead on

top of the complexity of Tendermint (cf. Section 6 for concrete

numbers). Hierarchical deterministic wallets can be used to store a

single DAPS key per validator.

5.1.4 Discussion. Our finality gadget can be composed with any

SMR consensus protocol with a fixed-sized validator set to equip

the protocol with accountable safety. Therefore, our remote staking

protocol, whether it has smart or dumb contracts, can be instanti-

ated with any such protocol as the consumer chain. Then, clients of

the protocol could choose between outputting the full ledger, thus

ensuring liveness in the absence of finality signatures, or its prefix

that was attested by finality signatures, thus ensuring accountable

safety (cf. [35, 36, 46] for the nested ledger paradigm).

In Appendix D, we formally prove that Tendermint [15] is not

accountably-safe, prompting us to design our finality gadget. An

alternative way to provide accountable safety to Tendermint would

be to modify the protocol itself (cf. Appendix D.4). In this case, it is

also possible to use DAPS directly for signing in-protocol messages

to enable remote staking. We have opted to follow the finality

signature approach for two reasons: (i) it is simple, and (ii) it adds

DAPS on top of Tendermint, without changing the original protocol.

The latter feature of the finality gadget helps its adoption by the

existing blockchain projects, which appreciate modularity.

In terms of incentives, by delegating their stake to a validator, our

architecture enables Bitcoin stake holders to earn staking rewards

on the consumer chain (i.e., yield farm), a form of investment that

was not possible for bitcoins prior to our work.

10

Remote Staking with Economic Safety

5.2 Slashing Validators with the Bond Contract
In this section, we complete the description of the slashing mecha-

nism by adding the bond contract to the finality gadget, and prove

that the protocol achieves economic safety.

5.2.1 Bond contract. The bond contract requires the validators to

put up bitcoin tokens as deposit, i.e., bond their stake, in a bond

contract deployed on Bitcoin. These deposits remain locked for a

predetermined duration measured in the number of Bitcoin blocks,

during which the validator must fulfill its duties towards the con-

sumer chain.

5.2.2 Using covenants for slashing. The bond contract ensures that

a validator’s stake can only be sent to an unspendable output un-

til its validator duties end, after which the validator can unbond

by sending its stake to an address it controls. For this purpose,

the contract uses a covenant along with a timelock to restrict the

spending method until the validator’s duties end. To slash a coin,

it is sufficient to input a spending transaction (called the slashing

transaction) to Bitcoin, upon which the contract sends the coin

to the unspendable address (an OP_RETURN output) specified by

the covenant (OP_CHECKTEMPLATEVERIFY). If the validator’s

secret key is exposed, anyone can use the exposed key to create

and send a slashing transaction. Hence, a validator whose secret

key is exposed cannot avoid slashing, even if it collaborates with

some of the miners.

Algorithm 4A simple bond contract implemented in Bitcoin Script

using OP_CHECKTEMPLATEVERIFY. In a year, the validator can

take their deposit back. Until then, if they leak their key, anyone

can execute the slashing transaction.

OP_IF
<1 year>
OP_CHECKLOCKTIMEVERIFY OP_DROP

OP_ELSE
<hash_of_slashing_transaction>
OP_CHECKTEMPLATEVERIFY

OP_ENDIF

<validator_pubkey>
OP_CHECKSIG

5.2.3 Covenant emulation. Until covenants are enabled as part of

Bitcoin script, we emulate their function with a covenant committee

consisting of 𝑚 members. We structure the bond contract as an

𝑚+1-out-of-𝑚+1multi-signature, such that𝑚+1 signatures by the
committee members and the staked validator are required to spend

the deposit before the validator’s duties end (Alg. 5). The committee

co-signs a slashing transaction at the time of the creation of the

bond contract, such that anyone can complete and execute it if the

validator’s secret key is exposed. The committee is trusted to never

co-sign a different transaction collectively, as that would break the

covenant. The committee members should ideally delete their sign-

ing keys after generating their signatures, to ensure that a future

attacker cannot break the covenant, even if they compromise the

committee. If at least one of the𝑚 members is honest and manages

to keep its signing key private (existential honesty assumption),

then the covenant becomes unbreakable (w.o.p.). The more commit-

tee members there are, the more plausible this existential honesty

assumption becomes.

Anyone can join the covenant committee permissionlessly at

the time of its formation. As it is used to ensure slashing when

the validators violate the protocol rules, PoS chain users with high-

value transactions (such as exchanges) are incentivized to join the

committee to enforce its security. They do not have to trust anyone

but themselves to delete their signing keys and guarantee that

the covenant is unbreakable, thus removing any trust requirement

(signing keys are deleted only after the multisig is created). As a

further incentive, participation in the committee can be rewarded

on Bitcoin using adaptor signatures or the consumer chain.

The committee can be represented in a space-efficient multi-

signature scheme, such as MuSig2 [37]. The downside of a multi-

signature is that if only a single member is offline or refuses to

participate, then the committee cannot complete its signature. The

chance of defection by a committee member increases as the com-

mittee size grows. In this case, the committee must exclude the

members that halt the signing process. However, to sustain our

1-out-of-𝑚 assumption, an objective measure is required to distin-

guish between the case of a single malicious member halting the

progress, and the case where𝑚−1maliciousmembers try to exclude

the only honest member from the committee. We can achieve the

desired objectivity by requiring the committee members to publish

their nonces, public keys and partial signatures on Bitcoin when the

signature is not completed within some acceptable timeframe. This

allows all users to observe which committee members published

a correct signature on time, and which members refused to sign

and thus must be excluded from the next signing attempt. This

workaround ensures that a single member cannot disrupt the sign-

ing process for long, thus enabling the permissionless registration

of the committee members.

With MuSig2 [37], the size of an emulated covenant on Bitcoin

is ∼ 100 bytes, consisting of a 32-bytes aggregate public key and

a 64-bytes signature. Optimistically, all committee members are

honest, and the signature is promptly created off-chain. When par-

ties must post their partial signatures to Bitcoin due to unrespon-

sive members (worst-case), emulation would require 16 kBytes for

𝑚 = 100, assuming 32-bytes keys, 64-bytes signatures and two 32-

byte nonces for delinearization per member. Assuming that these

partial signatures are posted as OP_RETURN transactions, which

allow attaching 80 bytes of arbitrary data to the transaction out-

put [5], posting this data costs less than 1000 USD as of April 15
4
,

an acceptable amount for securing large stake.

Further optimizations are possible to reduce the complexity of

the aggregate signature generation. For instance, if many (e.g., 𝑛)

validators join the protocol together, each committee member can

re-use the same key for emulating the covenant for all of the val-

idators, reducing the worst-case on chain cost from 𝑂 (𝑛 ·𝑚) to
𝑂 (𝑚). Similarly, although MuSig2 for covenant emulation has two

rounds – committing to the nonces (𝑅) and signatures (𝑠) – regular

committee members can reduce this to a single round per aggregate

4
Size of 1OP_RETURN transaction is 205 bytes, it takes ∼ 30 satoshi per byte to have

a transaction mined within three blocks with a latency of 30 minutes (on April 15) [2],

and the average Bitcoin price on April 15 was 65, 753 USD [1].

11

signature (covenant emulation). Instead of committing to 𝑅 and

then 𝑠 , each member can commit together with 𝑠 also to its next

nonce 𝑅next for the next multisig, when the next validator joins and

requires an emulated covenant. Then, all nonces are known to all

parties before the next validator joins.

Algorithm 5 The bond contract, emulated with a deleted-key

covenant. The committee pre-signs with a MuSig2 multi-signature.

OP_IF
<1 year>
OP_CHECKLOCKTIMEVERIFY OP_DROP

OP_ELSE
<committee_pubkey>
OP_CHECKSIGVERIFY

OP_ENDIF

<validator_pubkey>
OP_CHECKSIG

5.2.4 From DAPS safety to economic safety with static stake.

Theorem 8 (Economic Safety). Equipped with covenants, the

static-stake remote staking protocol with dumb contracts satisfies

(𝑓 + 1)-economic safety. In the absence of covenants, the static-stake

remote staking protocol coupled with dumb contracts and using a

covenant committee satisfies (𝑓 + 1)-economic safety as long as one

of the committee members is honest.

Proof. By Theorem 6, Tendermint with the finality signature

protocol satisfies (𝑓 + 1)-DAPS safety. By Definition 5, when there

is a safety violation, the secret signing keys of at least 𝑓 +1 adversar-
ial validators are extracted by an efficient forensic protocol. Then,

when there is a safety violation, an honest client sends slashing

transactions to the bond contracts of the identified 𝑓 + 1 validators,
and these transactions are subsequently executed by Bitcoin. There-

fore, in the event of a safety violation, 𝑓 + 1 adversarial validators
get slashed. This holds for the covenant committee solution as well,

as long as one of the committee members is honest. On the other

hand, for any honest validator, given the set 𝑄 of message, context,

signature tuples returned by the validator (cf. Alg. 8), ∀(ct,𝑚,𝑚′)
such that (𝑚, ct, .) ∈ 𝑄 ∧ (𝑚′, ct, .) ∈ 𝑄 , it holds that𝑚 =𝑚′. Thus,
by existential unforgeability (Def. 7), no honest validator’s Bitcoin

stake can be slashed (w.o.p.). Therefore, the remote staking protocol

instantiated with Tendermint satisfies (𝑓 + 1)-economic safety. □

Recall that no PoS blockchain secured only by its native stake

can slash the adversarial validators after a safety violation if their

fraction exceeds 2/3 [23]. In this context, the remote staking pro-

tocol with a covenant committee improves on a standalone PoS

blockchain by ensuring that at least 1/3 of the validators can be

slashed after a safety violation as long as one of the committee

members is honest. Indeed, if the committee members are the same

entities as the validators, our solution would reduce the require-

ment of having over 1/3 honest validators for slashing to having a

single honest validator.

5.3 Supporting Dynamic Stake
In Sections 5.1 and 5.2, we have shown how finality signatures guar-

antee the extraction of the secret signing keys of the adversarial

validators, and how the adversarial validators’ stake can be slashed

on Bitcoin using the extracted keys in a static-stake protocol. Our

complete design with dynamic stake combines this slashing mecha-

nism with the protocol of Section 4, except that the smart contract

on the provider chain is replaced with a covenant or a covenant

committee, and the validators serve their duties for a predetermined

number of Bitcoin blocks due to the use of timelocks on Bitcoin.

The complete description along with the algorithms can be found

in Appendix B. Its security is expressed as follows.

Theorem 9 (Economic Safety). Equipped with covenants, the

remote staking protocol with dumb contracts satisfies (𝑓 +1)-economic

safety. In the absence of covenants, the remote staking protocol with

dumb contracts and a covenant committee satisfies (𝑓 + 1)-economic

safety as long as one of the committee members is honest.

Proof of Theorem 9 is given in Appendix G. It follows from a case-

by-case analysis, where after a safety violation, 𝑓 + 1 adversarial
validators’ stake is slashed in all possible cases.

Theorem 10 (Liveness). If the number of adversarial validators

in any window of Bitcoin blocks is less than or equal to 𝑓 , the remote

staking protocol with dumb contracts satisfies liveness with finite

latency.

Proof of Theorem 10 is given in Appendix H. It shows that

when the number of adversarial validators is sufficiently low, the

timestamps on Bitcoin do not affect the Tendermint ledger output by

the clients. Liveness then follows from the liveness of Tendermint.

6 IMPLEMENTATION
We implement a production-ready remote staking validator in

10, 620 lines of Go that secures Tendermint using staked bitcoin.

Our implementation covers the entire lifecycle of a validator, in-

cluding submitting a Bitcoin transaction to lock up funds, main-

taining DAPS key pairs, monitoring the Tendermint (consumer

chain) consensus protocol, and creating finality signatures. Besides

demonstrating the practicality of our construction, we use this

implementation to evaluate the operational costs of running a val-

idator, measured in its CPU and memory usage.

To simulate a production environment, we set up an end-to-end

testbedwith the following components: a private Bitcoin blockchain

running bitcoind, a Tendermint blockchain implemented using

the Cosmos SDK, a covenant committee, a monitoring program that

slashes equivocating validators, and our validator implementation.

The components reside on the same physical server, and are isolated

in separate docker containers. We configure Tendermint to produce

a block every 5 seconds. The validator implementation communi-

cates with a Tendermint blockchain client, a separate process, and

signs each block confirmed by it. In the steady state, the validator

uses 179MB of memory, and uses less than 10% of a core on a Xeon

E5 2698 v4 CPU, which can be further optimized in a less portable

implementation. This implies that the validator is lightweight, and

fits in even the smallest cloud VM instances.

Clients of the consumer chain use the chain’s original confirma-

tion rule and the quorum of the DAPS signatures together to finalize

12

Remote Staking with Economic Safety

blocks. Thus, both the PoS validators and the clients run light clients

of Bitcoin to verify that the DAPS signatures correspond to the Bit-

coin addresses with stake. This adds little overhead for the clients

(and validators) as Bitcoin is light-weight (24 MB/hour) compared

to most PoS protocols (for Ethereum, 300 MB/hour)
5
.

REFERENCES
[1] Bitcoin Price (I:BTCUSD) | YCHARTS. https://ycharts.com/indicators/bitcoin_

price.

[2] Bitcoin Transaction Fee Estimator & Calculator. https://privacypros.io/tools/

bitcoin-fee-estimator/.

[3] BitGo. https://www.bitgo.com/.

[4] Mesh security. https://github.com/osmosis-labs/mesh-security.

[5] OP_RETURN. https://en.bitcoin.it/wiki/OP_RETURN.

[6] Rootstock. https://rootstock.io/.

[7] Stacks: A bitcoin layer for smart contracts. https://stx.is/nakamoto.

[8] Private communication. 2022.

[9] Sunny Aggarwal. Mesh security talk at cosmoverse 2022. https://youtu.be/

Z2ZBKo9-iRs?t=4937.

[10] Andreas Antanopolous. BIP119, EU regulatory attack, El Salvador, and much

more in Q&A with aantonop. https://www.youtube.com/live/vAE5fOZ2Luw?

feature=shared&t=575, 2022.

[11] Christian Badertscher, Peter Gazi, Aggelos Kiayias, Alexander Russell, and Vas-

silis Zikas. Ouroboros genesis: Composable proof-of-stake blockchains with

dynamic availability. In CCS, pages 913–930. ACM, 2018.

[12] Dan Boneh, Sam Kim, and Valeria Nikolaenko. Lattice-based DAPS and gener-

alizations: Self-enforcement in signature schemes. In ACNS, volume 10355 of

Lecture Notes in Computer Science, pages 457–477. Springer, 2017.

[13] Ethan Buchman. Tendermint: Byzantine fault tolerance in the age of blockchains,

2016.

[14] Ethan Buchman, Rachid Guerraoui, Jovan Komatovic, Zarko Milosevic, Dragos-

Adrian Seredinschi, and Josef Widder. Revisiting tendermint: Design tradeoffs,

accountability, and practical use. In DSN (Supplements), pages 11–14. IEEE, 2022.

[15] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT

consensus. CoRR, abs/1807.04938, 2018.

[16] Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR,

abs/1710.09437, 2017.

[17] Vitalik Buterin, Diego Hernandez, Thor Kamphefner, Khiem Pham, Zhi Qiao,

Danny Ryan, Juhyeok Sin, Ying Wang, and Yan X. Zhang. Combining GHOST

and casper. CoRR, abs/2003.03052, 2020.

[18] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI,

pages 173–186. USENIX Association, 1999.

[19] Anthony Towns Christian Decker. SIGHASH_ANYPREVOUT for taproot scripts.

https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki, 2020.

[20] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable

consensus and applications to provably secure proof of stake. In Financial

Cryptography, volume 11598 of Lecture Notes in Computer Science, pages 23–41.

Springer, 2019.

[21] Evangelos Deirmentzoglou, Georgios Papakyriakopoulos, and Constantinos

Patsakis. A survey on long-range attacks for proof of stake protocols. IEEE

Access, 7:28712–28725, 2019.

[22] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the

presence of partial synchrony. J. ACM, 35(2):288–323, 1988.

[23] Tim Roughgarden Eric Budish, Andrew Lewis-Pye. The Economic Limits of Per-

missionless Consensus, 2024. Keynote Speech by Tim Roughgarden at Financial

Cryptography and Data Security 2024.

[24] Ethereum. PROOF-OF-STAKE (POS). https://ethereum.org/en/developers/docs/

consensus-mechanisms/pos/.

[25] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone

protocol: Analysis and applications. In EUROCRYPT (2), volume 9057 of Lecture

Notes in Computer Science, pages 281–310. Springer, 2015.

[26] Ethan Heilman and Armin Sabouri. OP_CAT BIP Draft. https://github.com/

EthanHeilman/op_cat_draft/blob/main/cat.mediawiki, 2023.

[27] James O’Beirne Jeremy Rubin. BIP119, CHECKTEMPLATEVERIFY. https://

github.com/bitcoin/bips/blob/master/bip-0119.mediawiki, 2020.

[28] Interlay Labs. Interlay v2: Bitcoin finance, unbanked, 2023. https://gateway.

pinata.cloud/ipfs/QmWp62gdLssFpAoG2JqK8sy3m3rTRUa8LyzoSY8ZFisYNB.

[29] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals

problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[30] Robin Linus. Stakechain: A bitcoin-backed proof-of-stake. In Financial Cryp-

tography Workshops, volume 13412 of Lecture Notes in Computer Science, pages

3–14. Springer, 2022.

5
These numbers are for the network data requirements of the clients, not extra storage.

[31] Gregory Maxmell. CoinCovenants using SCIP signatures, an amusingly bad idea,

2023. https://bitcointalk.org/index.php?topic=278122.msg2970937#msg2970937.

[32] Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In Financial

Cryptography Workshops, volume 9604 of Lecture Notes in Computer Science,

pages 126–141. Springer, 2016.

[33] Joachim Neu, Srivatsan Sridhar, Lei Yang, and David Tse. Optimal flexible

consensus and its application to ethereum. CoRR, abs/2308.05096, 2023. In IEEE

S&P 2024.

[34] Joachim Neu, Ertem Nusret Tas, and David Tse. Snap-and-chat protocols: System

aspects. CoRR, abs/2010.10447, 2020.

[35] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebb-and-flow protocols: A

resolution of the availability-finality dilemma. In SP, pages 446–465. IEEE, 2021.

[36] Joachim Neu, Ertem Nusret Tas, and David Tse. The availability-accountability

dilemma and its resolution via accountability gadgets. In Financial Cryptography,

volume 13411 of Lecture Notes in Computer Science, pages 541–559. Springer,

2022.

[37] Jonas Nick, Tim Ruffing, and Yannick Seurin. Musig2: Simple two-round schnorr

multi-signatures. In CRYPTO (1), volume 12825 of Lecture Notes in Computer

Science, pages 189–221. Springer, 2021.

[38] Nomic. Nomic bitcoin bridge. https://www.nomic.io/.

[39] Andrew Poelstra. Cat and Schnorr Tricks I. https://medium.com/blockstream/cat-

and-schnorr-tricks-i-faf1b59bd298, 2021.

[40] Andrew Poelstra. Cat and Schnorr Tricks II. https://medium.com/blockstream/

cat-and-schnorr-tricks-ii-2f6ede3d7bb5, 2021.

[41] Bertram Poettering and Douglas Stebila. Double-authentication-preventing

signatures. In ESORICS (1), volume 8712 of Lecture Notes in Computer Science,

pages 436–453. Springer, 2014.

[42] Polkadot. Polkadot consensus. https://wiki.polkadot.network/docs/learn-

consensus.

[43] Rootstock. Powpeg: Building the most secure, permissionless and uncensorable

bitcoin peg. https://dev.rootstock.io/rsk/architecture/powpeg/.

[44] Jeremy Rubin. Why CTV, why now? Was RE: Stumbling into a contentious

soft fork activation attempt. https://lists.linuxfoundation.org/pipermail/bitcoin-

dev/2022-January/019736.html, 2022.

[45] Tim Ruffing, Aniket Kate, and Dominique Schröder. Liar, liar, coins on fire!:

Penalizing equivocation by loss of bitcoins. In CCS, pages 219–230. ACM, 2015.

[46] Suryanarayana Sankagiri, Xuechao Wang, Sreeram Kannan, and Pramod

Viswanath. Blockchain CAP theorem allows user-dependent adaptivity and

finality. In Financial Cryptography (2), volume 12675 of Lecture Notes in Com-

puter Science, pages 84–103. Springer, 2021.

[47] Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod

Viswanath. BFT protocol forensics. In CCS, pages 1722–1743. ACM, 2021.

[48] Ertem Nusret Tas, David Tse, Fangyu Gai, Sreeram Kannan, Mohammad Ali

Maddah-Ali, and Fisher Yu. Bitcoin-enhanced proof-of-stake security: Possibili-

ties and impossibilities. In SP, pages 126–145. IEEE, 2023.

[49] EigenLayer Team. Eigenlayer: The restaking collective. https://docs.eigenlayer.

xyz/overview/whitepaper.

[50] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan-Gueta, and Ittai Abra-

ham. Hotstuff: BFT consensus with linearity and responsiveness. In PODC, pages

347–356. ACM, 2019.

A TENDERMINT IN A NUTSHELL
Tendermint is a PBFT-style [18] SMR protocol designed for the

partially synchronous network. It proceeds in rounds, each with a

unique, known leader that proposes a block. There are 𝑛 = 3𝑓 + 1
active validators. Each honest validator maintains five variables

throughout the protocol execution: step, lockedValue, lockedRound,
validValue and validRound. The variable step denotes the stage of

the protocol execution within the current round. It can take the

values Proposal, Prevote and Precommit.
At the beginning of the Proposal step, the leader sends a Proposal

message, ⟨Proposal, ℎ, 𝑟, 𝑣, 𝑣𝑟 ⟩, (proposal for short) containing a

block 𝑣 of transactions. Here, ℎ and 𝑟 denote the leader’s current

height (i.e. consensus instance) and round number respectively,

whereas 𝑣𝑟 denotes its validRound. Upon observing a proposal,

each validator enters the Prevote step and sends a Prevotemessage,

⟨Prevote, ℎ, 𝑟, 𝑠⟩, (prevote for short) for either the proposed block

(𝑠 = 𝑖𝑑 (𝑣)), or a special nil value (𝑠 = ⊥), depending on the proposal

and its internal state. Here, 𝑖𝑑 (𝑣) represents a succinct and binding

commitment to the proposed block (e.g. its hash). If the validator

13

https://ycharts.com/indicators/bitcoin_price
https://ycharts.com/indicators/bitcoin_price
https://privacypros.io/tools/bitcoin-fee-estimator/
https://privacypros.io/tools/bitcoin-fee-estimator/
https://www.bitgo.com/
https://github.com/osmosis-labs/mesh-security
https://en.bitcoin.it/wiki/OP_RETURN
https://rootstock.io/
https://stx.is/nakamoto
https://youtu.be/Z2ZBKo9-iRs?t=4937
https://youtu.be/Z2ZBKo9-iRs?t=4937
https://www.youtube.com/live/vAE5fOZ2Luw?feature=shared&t=575
https://www.youtube.com/live/vAE5fOZ2Luw?feature=shared&t=575
https://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://ethereum.org/en/developers/docs/consensus-mechanisms/pos/
https://github.com/EthanHeilman/op_cat_draft/blob/main/cat.mediawiki
https://github.com/EthanHeilman/op_cat_draft/blob/main/cat.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki
https://gateway.pinata.cloud/ipfs/QmWp62gdLssFpAoG2JqK8sy3m3rTRUa8LyzoSY8ZFisYNB
https://gateway.pinata.cloud/ipfs/QmWp62gdLssFpAoG2JqK8sy3m3rTRUa8LyzoSY8ZFisYNB
https://bitcointalk.org/index.php?topic=278122.msg2970937#msg2970937
https://www.nomic.io/
https://medium.com/blockstream/cat-and-schnorr-tricks-i-faf1b59bd298
https://medium.com/blockstream/cat-and-schnorr-tricks-i-faf1b59bd298
https://medium.com/blockstream/cat-and-schnorr-tricks-ii-2f6ede3d7bb5
https://medium.com/blockstream/cat-and-schnorr-tricks-ii-2f6ede3d7bb5
https://wiki.polkadot.network/docs/learn-consensus
https://wiki.polkadot.network/docs/learn-consensus
https://dev.rootstock.io/rsk/architecture/powpeg/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-January/019736.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2022-January/019736.html
https://docs.eigenlayer.xyz/overview/whitepaper
https://docs.eigenlayer.xyz/overview/whitepaper

observes 2𝑓 + 1 prevotes for a block 𝑣 (or the nil value), it subse-
quently enters the Precommit step and sends a Precommitmessage,

⟨Precommit, ℎ, 𝑟, 𝑖𝑑 (𝑣)⟩, (precommit for short) for that block (or the

nil value). Finally, a validator or a client finalizes a block for height

ℎ upon observing 2𝑓 + 1 precommits with height ℎ for the block.

The lockedValue denotes the most recent block, i.e. the one

with the largest round, for which the validator sent a precom-

mit, and lockedRound denotes the round of this precommit. Simi-

larly, validValue denotes the most recent block for which the val-

idator has observed 2𝑓 + 1 prevotes by distinct validators, and

validRound denotes this round. If a validator has received a pro-

posal ⟨Proposal, ℎ, 𝑟, 𝑣, 𝑣𝑟 ⟩ from the round leader before entering

the Prevote step and its lockedRound = −1, i.e. it is not locked on

any block, it sends a prevote for the proposed block. Otherwise, if its

lockedRound > −1, i.e. it is locked on a block lockedValue, the val-
idator checks if either 𝑣 is the same as its lockedValue (voting rule
1) or if it has observed 2𝑓 +1 round 𝑣𝑟 prevotes ⟨Prevote, ℎ, 𝑣𝑟, 𝑖𝑑 (𝑣)⟩
for 𝑣 , such that 𝑣𝑟 > lockedRound (voting rule 2). If either of the
voting rules is satisfied, it sends a prevote for the proposed block.

Otherwise, it sends a prevote with the nil value.

B THE TIMESTAMPING PROTOCOL
Each client and validator downloads the consumer blocks and track

the timestamps and the bond contract on the provider chain. When

we talk about the remote staking protocol with smart contracts,

we consider a consumer chain running a PBFT-style consensus

protocol, where blocks are confirmed by a quorum of votes (e.g., pre-

commit votes in Tendermint, commit votes in HotStuff [50]). When

we talk about the remote staking protocol with dumb contracts, we

use Bitcoin as the provider chain and Tendermint with the finality

gadget as the consumer chain. The protocol works in almost the

same manner in both cases, and the differences will be explicitly

highlighted in the description below. Before describing the details

of the timestamping protocol, we recall the parameters 𝑘𝑐 and 𝑘𝑓
defined by Proposition 1. Intuitively, 𝑘𝑐 denotes the number of

provider blocks added to the confirmed provider chain during 𝑇
cf

time, the liveness parameter of the provider chain. Similarly, 𝑘𝑓
denotes the time, measured in the number of provider blocks, it

takes for a message posted to the provider chain to appear in a

confirmed block.

B.1 Determining the Validator Set
An honest validator includes the hash of the highest confirmed

provider block in its view within the proposed consumer block.

When an honest validator first receives a consumer block 𝐵 pro-

posed at a certain height, it checks if the provider block 𝑏 referred

by the hash in 𝐵’s parent is confirmed in its view. If 𝑏 becomes

confirmed before the validator moves to the voting step of the pro-

tocol (Prevote in Tendermint), it continues to execute the consumer

chain protocol as specified. Otherwise, it ignores block 𝐵.

When a client c first downloads a consumer block 𝐵, it checks

if the block is valid in its view. The genesis consumer block, 𝐵0,

is assumed to be valid and specifies the initial validator set by

referring to a provider block containing the bonding transactions

for this initial set. Validity of any other consumer block 𝐵 at height

|𝐵 | is determined by c according to the following rules: (i) there

Algorithm 6 The algorithm used by a client c to determine if a

consumer block 𝐵 is available and valid. It takes the consumer

chain C ending at 𝐵 and the confirmed provider chain B in c’s
view as input and outputs true if 𝐵 is available and valid. The

function GetVals outputs the validator set determined for the next

consumer chain height by an available and valid consumer chain

C′ and a confirmed provider chain B taken as input. It outputs

⊥ if any provider block among those referred by the consumer

blocks within C′ is not in B. The function Signed checks if there

are 2𝑓 + 1 finality signatures on a given consumer block by the

specified validator set.

1: function IsValid(C, B)
2: if C = 𝐵0 then ⊲ If𝐶 includes only the genesis consumer block

3: return True

4: end if
5: if C[0] ≠ 𝐵0 then
6: return False

7: end if
8: 𝐵0, . . . , 𝐵𝑟 ← C
9: for 𝑖 = 1 to 𝑟 do
10: vals← GetVals(C[: i − 1], B)
11: if ¬Signed(C[𝑖], vals) ∨ vals = ⊥ then
12: return False

13: end if
14: end for
15: return True

16: end function

are 2𝑓 + 1 confirming signatures for 𝐵 (there are 2𝑓 + 1 finality

signatures for 𝐵 with context |𝐵 | in the case of dumb contracts)

from the correct validator set for height |𝐵 |, (ii) the provider block
𝑏 referred by 𝐵 is confirmed in c’s view, and (iii) 𝐵’s parent is valid

(Alg. 6). If so, c accepts 𝐵 as a valid consumer block.

The validator set stays fixed during periods of𝑚 consecutive

consumer chain heights, where 𝑚 can be as little as 1. Suppose

a client c wants to determine the validator set for period 𝑒 after

observing valid blocks for the periods 1, . . . , 𝑒−1. Let𝑏 be the highest
confirmed provider block referred by the consumer blocks from

periods 1, . . . , 𝑒 − 1 in c’s view at some time 𝑡 . Then, c determines

the validator set for period 𝑒 as those who have bonded their stake

(on the provider chain) by the provider block 𝑏, and whose validator

duties have not ended by 𝑏.

For ease of description, in the rest of this section, we assume that

there are𝑛 = 3𝑓 +1 bonded validators, each with equal stake, at each
period 𝑒 ∈ Z+. We note that our protocol accommodates different

numbers of validators at different periods with inhomogeneous

stake amounts. In the latter case, the voting power of the validators

must be scaled in proportion to the fraction of their stake within

their period’s total stake. Then, we can guarantee that if a safety

violation is committed across blocks within a period 𝑒 with a total

stake of 𝑝 , at least 𝑝/3 tokens belonging to the adversarial validators
can be slashed.

B.2 Bonding and Unbonding
To join the validator set, a validator locks its stake in the provider

chain’s bond contract via a bonding transaction. Upon bonding its

14

Remote Staking with Economic Safety

Algorithm 7 The algorithm used by a client c to find the canonical
consumer chain Cc𝑡 at time 𝑡 . It takes as input a tree T of available

and valid consumer blocks and the confirmed provider chain B in

c’s view at time 𝑡 . The function GetCkpts outputs the ordered se-

quence of timestamps on the given provider chain B. The function
IsCor checks if a given timestamp is correct based on the height 𝐻

of the canonical consumer chain output so far, the tracked current

period per and the validator set identified by this canonical con-

sumer chain. The function ProH returns the height of the provider

block containing a given timestamp or referred by a given con-

sumer block depending on its input. The function ConH returns

the height of the specified consumer chain. The function GetCh

returns the chain of available and valid consumer blocks behind

a given timestamp using T . It returns ⊥ if there is an unavailable

or invalid block in the consumer chain defined by the block at the

preimage of the given timestamp. The function GetProH takes a

consumer chain C and a provider chain B as input and returns the

height of the highest provider block in B among those referred

by the consumer blocks within C (if this highest provider block is

not in B, it returns ⊥). The function IsLast returns true if a given

consumer chain ends at a block that is the last block of its period.

The function GetChildren returns the children of a given block.

1: function OutputConsumerCh(T, B)
2: per← 1

3: ts1, . . . , ts𝑟 ← GetCkpts(B)
4: C, 𝐻, vals← 𝐵0, 0,GetVals(𝐵0, B) ⊲ 𝐻 denotes the consumer

height.

5: ℎ ← ProH(𝐵0)
6: for 𝑖 = 1 to 𝑟 do ⊲ Obtain the timestamped consumer chain

7: if IsCor(ts𝑖 , vals, 𝐻, per) ∧ ProH(ts𝑖) < ℎ + 𝑘𝑑 then
8: C𝑖 ← GetCh(T, ts𝑖)
9: if C𝑖 = ⊥ then
10: return C ⊲ Safe-stop rule 1

11: else if C ⪯ C𝑖 ∧ ConH(C𝑖) = 𝐻 then
12: if | B | ≥ ℎ+𝑘𝑑 +𝑘𝑓 ∧∃ts : (ProH(ts) < ℎ+𝑘𝑑 +𝑘𝑓 ∧

ts conflicts with C𝑖) then
13: return C ⊲ Safe-stop rule 2

14: else
15: C ← C𝑖 ⊲ Update C.
16: 𝐻 ← |C𝑖 |
17: if IsLast(C𝑖) then
18: ℎ ← GetProH(C𝑖 , B)
19: per← per + 1
20: vals← GetVals(Ci, B)
21: end if
22: end if
23: end if
24: end if
25: end for
26: chs← GetChildren(T, C[−1])
27: chs← {𝐵 : 𝐵 ∈ chs ∧ |B | < GetProH(𝐵.C, B) + 𝑘𝑑 }
28: while |chs | = 1 do
29: C ← C ∥ chs ⊲ Add the new child to C
30: chs← GetChildren(T, chs)
31: chs← {𝐵 : 𝐵 ∈ chs ∧ |B | < GetProH(𝐵.C, B) + 𝑘𝑑 }
32: end while
33: return C
34: end function

stake at some provider block 𝑏, it can act as a validator for the con-

sumer chain heights described above while it continues its validator

duties. In the case of a smart contract on the provider chain, the

validator can request to unbond by sending a message to the bond

contract. Its validator duties end at the confirmed provider block

𝑏′ that includes the message. In the case of Bitcoin as the provider

chain, its validator duties end at the provider block that extends 𝑏

by some fixed amount 𝐾𝑎 determined by the protocol. Afterwards,

the validator can retrieve its stake at or after the provider block

extending 𝑏′ by 𝑘𝑢 blocks (i.e., extending 𝑏 by 𝐾𝑎 + 𝑘𝑢 blocks on

Bitcoin), where 𝑘𝑢 = 2𝑘𝑐 + 4𝑘𝑓 and it is called the unbonding delay.

To prevent early unbonding, the bond contract enforces a timelock

on the bonded stake until the (𝐾𝑎 + 𝑘𝑢)-th block extending 𝑏 (cf.

Algs. 4 and 5).

B.3 Timestamping on the Provider Chain
Each honest validator periodically sends the timestamp of the last

block of each period to the provider chain. To avoid duplicate times-

tamps, a single client or validator called the watchtower can be

tasked with timestamping new blocks. The timestamp of a con-

sumer block consists of the hash of the block, its height and the

quorum of 2𝑓 + 1 signatures on the block (finality signatures on

the block with context equal to its height in the case of dumb con-

tracts) by the corresponding validator set. Note that the period 𝑒

of a consumer block can be found by dividing its height 𝐻 with𝑚

(i.e., 𝑒 = ⌊𝐻/𝑚⌋ + 1).
Two timestamps are said to conflict if they both include (i) the

same consumer block height𝐻 , (ii) different consumer block hashes,

and (iii) 2𝑓 + 1 signatures (finality signatures with height 𝐻 as

context in the case of dumb contracts) on their respective consumer

block hashes.

B.4 Block Output Rules (Alg. 7)
When there is a posterior corruption attack, a client cmight observe

conflicting valid consumer blocks confirmed (finalized in the case

of dumb contracts) by the same validator set. In this case, cwants to
identify and output only the canonical consumer chain consisting

of blocks signed earlier. Towards this goal, it first downloads the

blocktree of all valid consumer blocks. Let ts𝑖 , 𝑖 ∈ [𝑟], denote
the sequence of timestamps on the provider chain, listed from

the genesis to the tip of the chain (denoted by Bc
𝑡) in c’s view at

time 𝑡 . Starting at the genesis consumer block, c constructs the
canonical consumer chain (denoted by Cc𝑡) one block at a time, by

sequentially processing these timestamps. For 𝑖 = 1, . . . , 𝑟 , let C𝑖
denote the chain ending at the consumer block (denoted by 𝐵𝑖),

which is the preimage of the hash within ts𝑖 , if 𝐵𝑖 and its prefix are

available and valid in c’s view at time 𝑡 . Suppose c has processed
the timestamp sequence until some timestamp ts𝑗 and constructed

so far as its canonical consumer chain, the chain C of available

and valid consumer blocks ending at some block 𝐵 with consumer

chain height 𝐻 and period 𝑒 . Define 𝑒 = 𝑒 + 1 if 𝐵 is the last block

of its period; and 𝑒 = 𝑒 otherwise. Let ℎ𝑒−1 denote the height of
the highest confirmed provider block referred by the consumer

blocks within the periods 1, . . . , 𝑒 − 1. We call the next timestamp

ts𝑗+1 correct, if (i) the height 𝐻 𝑗+1 included in ts𝑗+1 is larger than
𝐻 and ⌊𝐻 𝑗+1/𝑚⌋ + 1 = 𝑒 , (ii) ts𝑗+1 includes over 2𝑓 + 1 signatures

15

on its consumer block hash (finality signatures on its consumer

block hash with context equal to height 𝐻 𝑗+1 in the case of dumb

contracts) by the validator set of period 𝑒 , and (iii) ts𝑗+1 appears at
a provider chain height less than ℎ𝑒−1 + 𝑘𝑑 , where 𝑘𝑑 = 2𝑘𝑐 + 𝑘𝑓
is called the timestamp delay (Line 7, Alg. 7). The items (i) and

(ii) above are checked for a timestamp by the function IsCor(.) in
Alg. 7. Then;

(1) Safe-stop Rule 1: (Line 9, Alg. 7) If (i) the timestamp ts𝑗+1 is
correct, and (ii) a block in C𝑗+1 is either unavailable or invalid
in c’s view, then c stops going through the sequence ts𝑖 , 𝑖 ∈ [𝑟],
and outputs C as its canonical consumer chain

6
.

(2) (Line 11, Alg. 7) If (i) the timestamp ts𝑗+1 is correct, (ii) every
block in C𝑗+1 is available and valid in c’s view, (iii) the chain
C𝑗+1 is of the height specified by ts𝑗+1, and (iv) C ⪯ C𝑗+1 (i.e.,
C𝑗+1 is consistent with the consumer chain output so far);

• Safe-stop Rule 2: (Line 12, Alg. 7, Fig. 2) If |Bc
𝑡 | ≥ ℎ𝑒−1 +

𝑘𝑑 +𝑘𝑓 and there is a correct timestamp at a provider chain

height less than ℎ𝑒−1+𝑘𝑑 +𝑘𝑓 conflicting with C𝑗+1, then c
stops going through the sequence ts𝑖 , 𝑖 ∈ [𝑟], and outputs

C as its canonical consumer chain.

• Update: (Line 15, Alg. 7) If |Bc
𝑡 | < ℎ𝑒−1 + 𝑘𝑑 + 𝑘𝑓 , or if

|Bc
𝑡 | ≥ ℎ𝑒−1 +𝑘𝑑 +𝑘𝑓 and there is no correct timestamp at

provider chain heights less than ℎ𝑒−1 + 𝑘𝑑 + 𝑘𝑓 conflicting

with C𝑗+1, then c sets C𝑗+1 as the new canonical chain

(C ← C𝑗+1) and moves to ts𝑗+2 as the next timestamp.

(3) Ignore: If none of the cases above are satisfied, c ignores ts𝑗+1
and moves to ts𝑗+2 as the next timestamp.

Unless one of the safe-stop rules is triggered, c processes all

timestamps on its provider chain and identifies a timestamped

canonical consumer chain ending at some block 𝐵ℓ from period 𝑒ℓ .

Let ℎℓ−1 denote the height of the highest confirmed provider block

referred by the consumer blocks by the end of period 𝑒ℓ − 1. Then,
starting at 𝐵ℓ , c complements the timestamped canonical chain by

outputting a chain of available and valid consumer blocks uniquely

extending 𝐵ℓ , as long as the height of c’s confirmed provider chain

is less than ℎℓ−1 + 𝑘𝑑 (Line 31, Alg. 7). This is for fast progress at

the speed of the consumer chain even after the latest timestamps.

B.5 Enforcing Slashing on the Provider Chain
In certain cases, clients send timestamps to the provider chain in

addition to the periodic timestamps for the last consumer block of

every period, to warn other clients about a potential safety viola-

tion. If there were indeed a safety violation, these extra timestamps

ensure the identification of the adversarial validators (extraction of

the adversarial validators’ secret keys in the case of dumb contracts)

and thus the slashing of their stake. Let C denote the canonical

consumer chain in c’s view and 𝑒 denote the period of the last

block in C. Let ℎ denote the height of the highest provider block

in c’s confirmed provider chain, among those referred by the con-

sumer blocks (all of which are valid by definition) in C from periods

1, . . . , 𝑒 − 1. Then, if any of the following happens, c sends a times-

tamp to the provider chain for all of the consumer blocks within C

6
Client c knows the correct validator set for all periods 𝑒 ≤ 𝑒 . This is because; every

block in its current canonical consumer chain C is available and valid in its view. In

particular, if 𝐵 is the last block of period 𝑒 , c can infer the validator set of period 𝑒 + 1
from C.

that follow the last consumer block in C with a correct timestamp

on the provider chain before or at block ℎ′ − 𝑘𝑑 − 𝑘𝑓 , where ℎ′
denotes the height of c’s confirmed provider chain:

(1) Client c decides to go offline. (In this case, it must notify other

clients about its view of the confirmed consumer blocks.)

(2) The safe-stop rule 1 is triggered for client c.
(3) The safe-stop rule 2 is triggered for client c.
(4) Client c does not observe a correct timestamp on its confirmed

provider chain for the last consumer block 𝐵 from period 𝑒

before the confirmed provider chain reaches height ℎ + 𝑘𝑑 .
(5) Client c observes two correct timestamps for heights in pe-

riod 𝑒 on its confirmed provider chain before height ℎ + 𝑘𝑑 ,
and the blocks behind one of the timestamps is either unavail-

able, invalid, or conflicting with those of the earlier correct

timestamps.

In the case of smart contracts, the extra timestamps sent due to

the emergency conditions above could contain extra information

pertaining to the consumer chain’s consensus protocol; so that any

client can create an evidence of protocol violation for the adversarial

validators, and send this evidence to the bond contract to slash their

stake. In the case of dumb contracts, upon obtaining two quorums of

2𝑓 +1 finality signatures for the same height but two different block

hashes, any client can extract the secret keys of 𝑓 + 1 validators
using Alg. 3 and send this evidence to the respective bond contracts

to slash their stake.

C FORMAL DEFINITIONS FOR THE
PROPERTIES OF DAPS

C.1 Correctness
Definition 6 (Correctness). ∀𝑚 ∈ M:

Pr

[
DAPS-Ver(pk,𝑚, 𝜎, ct) = 1 :

sk←DAPS-KeyGen(1𝜅),
pk←DAPS-PK(1𝜅),
𝜎←DAPS-Sign(sk,𝑚,ct)

]
= 1

Intuitively, correctness guarantees that a correctly generated

signature always passes verification.

C.2 Existential Unforgeability

Algorithm 8 Game for Strong Existential Unforgeability under Adaptive

Chosen Message Attacks (sEUF-CMA).

1: function sEUF-CMAA (1𝜅)
2: sk← DAPS-KeyGen(1𝜅) ;
3: pk← DAPS-PK(sk) ;
4: 𝑀 ← ∅
5: (𝑚∗, ct∗, 𝜎∗) ← AO(.,.) (pk) ⊲ A can call multiple times.

6: return (𝑚∗, ct∗, 𝜎∗) ∉ 𝑄 ∧ DAPS-Ver(pk,𝑚∗, ct∗, 𝜎∗) ∧
∀(ct,𝑚,𝑚′) . (𝑚, ct, .) ∈ 𝑄 ∧ (𝑚′, ct, .) ∈ 𝑄 =⇒ 𝑚 =𝑚′

7: end function
8: function O(𝑚, ct) ⊲ Signing oracle

9: 𝜎
$← DAPS-Sign(sk,𝑚, ct)

10: 𝑄 ← 𝑄 ∪ { (𝑚, ct, 𝜎) }
11: return 𝜎

12: end function

Definition 7 (Existential Unforgeability). ∀ PPT A:

Pr[sEUF-CMAA (1𝜅) = 1] < negl(𝜅)
16

Remote Staking with Economic Safety

Intuitively, existential unforgeability guarantees that signatures

are, except with negligible probability, unforgeable when the secret

key is unknown, even after querying for multiple signatures.

C.3 Extractability

Algorithm 9 Game for Extractability under Single Chosen Message Attacks

(EXT-SCMA)

1: function EXT-SCMAA (1𝜅)
2: (pk, ct,𝑚1, 𝜎1,𝑚2, 𝜎2) ← A
3: return DAPS-Ver(pk,𝑚1, ct, 𝜎1) ∧ DAPS-Ver(pk, 𝑚2, ct, 𝜎2) ∧

DAPS-PK(DAPS-Ext(pk,𝑚1, 𝜎1,𝑚2, 𝜎2, ct)) ≠ pk ∧𝑚1 ≠𝑚2

4: end function

Definition 8 (EXT-SCMA security). The EXT-SCMA game for-

malizes the extractability guarantee for the DAPS scheme.

∀A ∈ PPT, Pr[EXT-SCMAA (1𝜅) = 1] < negl(𝜅)

Lastly, EXT-SCMA security guarantees that two valid signatures

on distinct messages with the same key and context can be used to

extract the secret key, except with negligible probability.

D LACK OF ACCOUNTABLE SAFETY IN
TENDERMINT

We now explore why Tendermint lacks accountable safety.

D.1 Accountable Safety for Tendermint
If two clients finalize conflicting blocks 𝐵 and 𝐵′ at the same round,

then they can identify the adversarial validators that sent precom-

mits for both blocks by inspecting the 2𝑓 + 1 precommits for 𝐵 and

𝐵′. However, when the conflicting blocks are finalized at different

rounds 𝑟 and 𝑟 ′ > 𝑟 , they cannot use the quorum intersection ar-

gument directly on the two precommit quorums. To understand

this, consider an honest validator that sent a precommit for 𝐵 at

round 𝑟 . Even though the validator locked on 𝐵 at round 𝑟 and set

its lockedValue = 𝐵 and lockedRound = 𝑟 , it might have observed

a quorum of 2𝑓 + 1 prevotes for block 𝐵′ at a later round 𝑟∗ > 𝑟 . In
this case, upon observing the proposal ⟨Proposal, ℎ, 𝑟 ′, 𝐵′, 𝑟∗⟩, the
honest validator would send a prevote for block 𝐵′ by voting rule
2, after which it could send a precommit. Then, the naive intersec-

tion argument between the precommit quorums would identify this

honest validator as adversarial, which violates accountable safety.

To find the validators culpable for the safety violation in the ex-

ample above, we consider the first round 𝑟∗ such that a collection of

2𝑓 +1 prevotes from round 𝑟∗, i.e., ⟨Prevote, ℎ, 𝑟∗, 𝑖𝑑 (𝐵′)⟩, is formed

for block 𝐵′. The set of validators that sent these prevotes constitute
the potential set of adversarial validators. Suppose these valida-

tors broadcast prevotes for some proposal ⟨Proposal, ℎ, 𝑟∗, 𝐵′, 𝑣, 𝑣𝑟 ⟩.
Now, since 𝑟∗ is the first round greater than 𝑟 , where a quorum of

2𝑓 + 1 prevotes is formed for 𝐵′, no validator could have observed

a quorum for 𝐵′ at any round 𝑣𝑟 ∈ (𝑟, 𝑟∗). Thus, the validators that
were locked on 𝐵 at round 𝑟 should not have sent prevotes for 𝐵′

as none of the voting rules could have been satisfied in their views.

Sending a prevote in such circumstances is called the amnesia attack

since the adversarial validators forget that they had an earlier lock

on 𝐵 (cf. [14]). Consequently, to determine the set of adversarial

validators, clients must find the intersection of the validator sets

that have sent the 2𝑓 + 1 precommits for block 𝐵 at round 𝑟 and the

2𝑓 + 1 prevotes for 𝐵′ at round 𝑟∗.

D.2 Lack of Accountable Safety under Partial
Synchrony

Unfortunately, the current version of Tendermint [15] does not

allow clients to generate a proof of protocol violation in the case

of an amnesia attack. This is due to the indistinguishability of two

worlds with different sets of adversarial validators under partial

synchrony.

Consider a client that aims to identify the culpable validators in

the attack above (by calling the forensic protocol), after collecting

transcripts and observing the quorum of 2𝑓 + 1 round 𝑟∗ > 𝑟

prevotes for 𝐵′. For this purpose, the protocol must ascertain that

𝑟∗ is the earliest round, where a quorum of 2𝑓 + 1 prevotes was

formed for block 𝐵′. In world 1, this is indeed the case. Then, the

protocol can identify the validators that sent both a round 𝑟∗ prevote
and a round 𝑟 precommit for 𝐵 as adversarial, since there is no set

of 2𝑓 + 1 prevotes for 𝐵′ from any round 𝑟 ′′ < 𝑟∗ that could have

prompted these validators to release their locks on 𝐵. However,

in world 2, there is a round 𝑟 ′′ < 𝑟∗, in which the adversarial

validators sent a quorum of 2𝑓 + 1 round 𝑟 ′′ prevotes for 𝐵′ to
the honest validators. No client (other than the honest validators)

receives these prevotes for block 𝐵′ due to partial synchrony. Thus,

for the clients and the forensic protocol invoked by them, the two

worlds are indistinguishable. Then, the adversary can convince the

clients that an honest validator is a protocol violator by giving them

the same proof output by the forensic protocol in world 1, which

contradicts accountable safety.

Theorem 11. Tendermint protocol does not provide accountable

safety with resilience greater than one validator under a partially

synchronous network.

Formal proof of Theorem 11 is presented in the full version of

this paper.

In Tendermint, proposals do not include the 2𝑓 + 1 prevotes

that justify the leader’s validValue. The protocol instead expects

the validators to receive these prevotes from the network, which

happens in a timely manner under synchrony. However, Theo-

rem 11 holds even if these prevotes are broadcast alongside the

proposals (as in HotStuff); since its proof already assumes that the

clients expect to see the round 𝑣𝑟 prevotes that justify a proposal

⟨Proposal, ℎ, 𝑟 = 2, 𝐵′, 𝑣𝑟 ⟩ before considering the proposal itself.

D.3 Lack of Accountable Safety under
Synchrony

If the network is known to become synchronous when the foren-

sic protocol is invoked, then the protocol can distinguish the two

worlds above with different sets of honest validators by querying

the honest validators and learning about the 2𝑓 + 1 prevotes from
round 𝑟 ′′ in world 2. However, this is not sufficient to provide ac-

countable safety, which requires the forensic protocol to generate a

transferable proof of protocol violation. As it is not possible to cre-

ate a proof of absence, each client must check for themselves which

world they are in, i.e., they must verify the absence or presence of

17

the 2𝑓 + 1 prevotes from some round 𝑟 ′′ < 𝑟∗ by communicating

with the honest validators. This observation is formalized by the

following theorem:

Theorem 12. Tendermint protocol does not provide accountable

safety with resilience greater than one validator, even if the network is

known to become synchronous when the forensic protocol is invoked.

Formal proof of Theorem 12 is presented in the full version of

this paper.

D.4 Tendermint Made Accountably-safe
Inspired by the HotStuff-view protocol in [47], we can change

Tendermint so that each Prevote message includes the validRound
number 𝑣𝑟 within the proposal it supports. For instance, if a valida-

tor sends a prevote for the proposal ⟨Proposal, ℎ, 𝑟∗, 𝐵′, 𝑣𝑟 ⟩, then it

includes 𝑣𝑟 to its prevote as shown: ⟨Prevote, ℎ, 2, 𝑖𝑑 (𝐵′), 𝑣𝑟 ⟩. This
small change suffices to make Tendermint accountably-safe and the

proof of accountable safety proceeds similar to [47, Theorem 5.1].

E PROOF OF THEOREM 11
Proof. Towards contradiction, suppose Tendermint provides

accountable safety with resilience of greater than one validator.

Consider rounds 𝑟 = 0, 1, 2 and 3 of some height ℎ before GST.

There are 3𝑓 + 1 validators. Let 𝑃 , 𝑄 and 𝑅 denote disjoint sets of

𝑓 validators each. Let 𝑥 denote the remaining validator. We next

consider the following two worlds.

World 1: Validators in 𝑅 and 𝑥 are adversarial and the rest are

honest.

Round 0: At round 0, the adversary delivers only the messages

among the validators in 𝑃 ∪ 𝑅 ∪ 𝑥 . A new block 𝐵 is proposed at

round 0, and gathers 2𝑓 + 1 prevotes and precommits from the

validators in 𝑃 ∪ 𝑅 ∪ 𝑥 . However, the honest validators in 𝑃 do not

observe the precommits by those in 𝑅. Thus, even though they lock

on 𝐵, they do not decide 𝐵.

Round 1: At round 1, the adversary delivers only the messages

among the validators in 𝑄 ∪ 𝑅 ∪ 𝑥 . A new block 𝐵′ is proposed
by an honest validator in 𝑄 and gathers 𝑓 round 1 prevotes from

the validators in 𝑄 . The adversarial validators in 𝑅 ∪ 𝑥 do not send

round 1 prevotes for 𝐵′. Hence, the honest validators in 𝑄 send

precommits with the nil value at round 1, and 𝐵′ cannot be decided
by the round 1 prevotes and precommits.

Round 2: At round 2, the adversary again delivers only the mes-

sages among the validators in 𝑄 ∪ 𝑅 ∪ 𝑥 . The adversarial leader 𝑥
sends the proposal ⟨PROPOSAL, ℎ, 𝑟 = 2, 𝐵′, 𝑣𝑟 = −1⟩. The block 𝐵′
gathers 2𝑓 + 1 round 2 prevotes ⟨PREVOTE, ℎ, 𝑟 = 2, 𝑖𝑑 (𝐵′)⟩ from
the validators in 𝑄 ∪ 𝑅 ∪ 𝑥 ; however, the adversarial validators

in 𝑅 ∪ 𝑥 do not show their prevotes to the honest validators in 𝑄 .

Hence, the honest validators in 𝑄 send precommits with the nil

value at round 2, and 𝐵′ cannot be decided by the round 2 prevotes

and precommits.

Round 3: Finally, at round 3, the adversary delivers only the

messages among the validators in 𝑃 ∪ 𝑅 ∪ 𝑥 . An adversarial val-

idator sends the proposal ⟨PROPOSAL, ℎ, 𝑟 = 3, 𝐵′, 𝑣𝑟 = 2⟩, and
the adversary delivers the 2𝑓 + 1 round 2 prevotes for 𝐵′ to the

honest validators in 𝑃 . Hence, the validators in 𝑃 unlock from 𝐵

and, along with the adversarial validators in 𝑅 ∪ 𝑥 , send prevotes

and precommits for 𝐵′.

Clients in World 1: A client c1 decides 𝐵 at the end of round 0

upon observing the round 0 prevotes and precommits for 𝐵 by the

validators in 𝑃 ∪ 𝑅 ∪ 𝑥 . A different client c2 decides 𝐵′ at the end
of round 3 upon observing the messages sent by the validators

in rounds 1, 2 and 3. Since Tendermint is accountably-safe with a

resilience of greater than one validator, upon collecting the mes-

sages received by the clients, the forensic protocol outputs at least

one validator from the set 𝑅 (otherwise, it must have identified an

honest validator which would imply a contradiction).

World 2: Validators in 𝑃 and 𝑥 are adversarial and the rest are

honest.

Round 0: At round 0, the adversary delivers only the messages

among the validators in 𝑃 ∪ 𝑅 ∪ 𝑥 . A new block 𝐵 is proposed at

round 0, and gathers 2𝑓 + 1 prevotes and precommits from the

validators in 𝑃 ∪ 𝑅 ∪ 𝑥 . However, the honest validators in 𝑅 do not

observe the precommits by those in 𝑅. Thus, even though they lock

on 𝐵, they do not decide 𝐵.

Round 1: At round 1, the adversary delivers only the messages

among the validators in 𝑃 ∪𝑄∪𝑥 . A new block 𝐵′ is proposed by an
honest validator in𝑄 . The block 𝐵′ gathers 2𝑓 + 1 round 1 prevotes
from the validators in 𝑃 ∪𝑄 ∪𝑥 ; however, the adversarial validators
in 𝑃 ∪ 𝑥 do not show their prevotes to the honest validators in 𝑄 .

Hence, the honest validators in 𝑄 send precommits with the nil

value at round 1, and 𝐵′ cannot be decided by the round 1 prevotes

and precommits.

Round 2: At round 2, the adversary delivers only the messages

among the validators in 𝑄 ∪ 𝑅 ∪ 𝑥 . The adversarial leader 𝑥 sends

two proposals: ⟨PROPOSAL, ℎ, 𝑟 = 2, 𝐵′, 𝑣𝑟 = −1⟩ to the validators

in 𝑄 and ⟨PROPOSAL, ℎ, 𝑟 = 2, 𝐵′, 𝑣𝑟 = 1⟩ to the validators in 𝑅.

It also shows the 2𝑓 + 1 round 1 prevotes for 𝐵′ to the validators

in 𝑅. Consequently, the block 𝐵′ gathers 2𝑓 + 1 round 2 prevotes

⟨PREVOTE, ℎ, 𝑟 = 2, 𝑖𝑑 (𝐵′)⟩ from the validators in 𝑄 ∪ 𝑅 ∪ 𝑥 ; how-
ever, the adversarial validator 𝑥 does not show its prevote to the

honest validators in 𝑄 ∪ 𝑅. Hence, the honest validators in 𝑄 ∪ 𝑅
send precommits with the nil value at round 2, and 𝐵′ cannot be
decided by the round 2 prevotes and precommits.

Round 3: Finally, at round 3, the adversary delivers only the mes-

sages among the validators in 𝑃 ∪ 𝑅 ∪ 𝑥 . An adversarial validator

sends the proposal ⟨PROPOSAL, ℎ, 𝑟 = 3, 𝐵′, 𝑣𝑟 = 2⟩, and the ad-

versary delivers the 2𝑓 + 1 round 2 prevotes for 𝐵′ to the honest

validators in 𝑅. Hence, all validators in 𝑃 ∪ 𝑅 ∪ 𝑥 , send prevotes

and precommits for 𝐵′.
Clients in World 2: A client c1 decides 𝐵 at the end of round 0

upon observing the round 0 prevotes and precommits for 𝐵 by the

validators in 𝑃 ∪ 𝑅 ∪ 𝑥 . A different client c2 decides 𝐵′ at the end
of round 3 upon observing all round 1, 2 and 3 messages, except

the round 1 prevotes by the validators in 𝑃 ∪ 𝑥 and the round 2

proposal ⟨PROPOSAL, ℎ, 𝑟 = 2, 𝐵′, 𝑣𝑟 = 1⟩ by 𝑥 . The adversarial

validators in 𝑃 ∪ 𝑥 send the same messages to the forensic protocol

as they do in world 1. Hence, the forensic protocol receives the

same set of messages as in world 1 and identifies 𝑥 and the same

subset of the validators in 𝑅 as in world 1 as protocol violators with

overwhelming probability. Since the validators in 𝑅 are honest in

world 2, this is a contradiction with the definition of accountable

safety. □

18

Remote Staking with Economic Safety

If the network were known to become synchronous when the

forensic protocol is invoked, the forensic protocol would receive

the 2𝑓 + 1 round 1 prevotes by the validators in 𝑃 ∪ 𝑄 ∪ 𝑥 from

the honest validators in 𝑅 (who observed these round 1 prevotes in

round 2) and identify those in 𝑃 as protocol violators in world 2.

F PROOF OF THEOREM 12
Proof. Towards contradiction, suppose Tendermint provides

accountable safety with resilience greater than one validator. At

the invocation of the forensic protocol, the network has become

synchronous. We next construct the following two worlds inspired

by the proof of Theorem 11:

World 1: This is the same as world 1 described by the proof of

Theorem 11. The forensic protocol does not receive any round

1 messages from the validators in 𝑃 and generates a proof that

irrefutably identifies a validator in 𝑅 as a protocol violator.

World 2: This is the same as world 2 described by the proof of

Theorem 11, except that since the network has become synchronous,

the forensic protocol has also received the round 1 prevotes by the

validators in 𝑃 ∪ 𝑥 and the round 2 proposal ⟨PROPOSAL, ℎ, 𝑟 =

2, 𝐵′, 𝑣𝑟 = 1⟩. Thus, the set of messages received by the forensic

protocol in world 2 is a superset of the messages received in world

2 of the proof of Theorem 11, which is the same as the messages

received in world 1. This implies that given these messages, an

adversarial client can generate the same proof as the one generated

in world 1, which irrefutably identifies a validator in 𝑅 as a protocol

violator. However, since the validators in 𝑅 are honest in world 2,

this is a contradiction with the definition of accountable safety. □

G PROOF OF THEOREMS 3 AND 9
Proof of Theorems 3 and 9. Suppose there are two clients c1

and c2 such that the canonical consumer chains Cc1𝑡1 and Cc2𝑡2 are

not consistent. Let 𝐵1 denote the consumer block with the smallest

height in Cc1𝑡1 among those conflicting with Cc2𝑡2 . Similarly, let 𝐵2

denote the block with the smallest height in Cc2𝑡2 among those

conflicting with Cc1𝑡1 . Let 𝐵0 denote the common parent of 𝐵1 and

𝐵2.

Suppose c1 first outputted 𝐵1 at some time 𝑡𝑎 , and c2 first out-
putted 𝐵2 at some time 𝑡𝑏 as part of its canonical consumer chain.

The validator set for the height of 𝐵1 and 𝐵2 is determined by the

highest provider block 𝑏 ∈ Bc1
𝑡𝑎
,Bc2

𝑡𝑏
, with height ℎ, among those

referred by the consumer blocks ending at the largest completed

period at or before 𝐵0. Next, we consider the following cases:

Case A: |Bc1
𝑡𝑎
| ≥ ℎ + 𝑘𝑑 and |Bc2

𝑡𝑏
| ≥ ℎ + 𝑘𝑑 . Then, both c1 and c2

must have respectively output 𝐵1 and 𝐵2 at Line 15, Alg. 7 upon

observing the correct timestamps ts1, ts2 ∈ Bc1
𝑡𝑎
,Bc2

𝑡𝑏
at heights less

than ℎ + 𝑘𝑑 . Without loss of generality, suppose ts1 appears in the

prefix of ts2. In this case, if every block in the consumer chain

determined by ts1 is available and valid in c2’s view at time 𝑡𝑏 ,

then c2 would also output 𝐵1 upon observing ts1. Thus, there must

be a block within the consumer chain determined by ts1 that is

unavailable or invalid in c2’s view at time 𝑡𝑏 . However, in this case,

the safe-stop rule 1 is triggered for c2 upon observing ts1, and it

does not output 𝐵2 (Line 9, Alg. 7). Hence, case A cannot happen.

Case B: |Bc1
𝑡𝑎
| < ℎ + 𝑘𝑑 and |Bc2

𝑡𝑏
| < ℎ + 𝑘𝑑 . Then, one of the

following cases must have happened:

• Case 1: Safe-stop rule 1 is triggered for c1 before its provider
chain reaches height ℎ + 𝑘𝑑 .

• Case 2: Client c1 decides to go offline before its provider chain

reaches height ℎ + 𝑘𝑑 .
• Case 3: Neither of the cases 1 and 2 happen until c1’s provider

chain reaches height ℎ + 𝑘𝑑 . However, c1 does not observe any
correct timestamp for 𝐵1 or its descendants by the time its

provider chain reaches height ℎ + 𝑘𝑑 .
• Case 4: Neither of the cases 1 and 2 happen until c1’s provider

chain reaches height ℎ + 𝑘𝑑 . Client c1 observes a correct times-

tamp ts1 for 𝐵1 or its descendants on its provider chain at a

height less than ℎ + 𝑘𝑑 , and every block timestamped by ts1 is
available and valid in c1’s view.

If cases 1, 2 or 3 happen, then c1 sends timestamps to the provider

chain for all of the blocks within its canonical consumer chain that

follow the last consumer block with a correct timestamp on the

provider chain at least before ℎ, i.e., at least all blocks following 𝐵0.

• Case I: Safe-stop rule 1 is triggered for c2 before its provider
chain reaches height ℎ + 𝑘𝑑 .

• Case II: Client c2 decides to go offline before its provider chain

reaches height ℎ + 𝑘𝑑 .
• Case III:Neither of the cases I and II happen until c2’s provider

chain reaches height ℎ + 𝑘𝑑 . However, c2 does not observe any
correct timestamp for 𝐵2 or its descendants by the time its

provider chain reaches height ℎ + 𝑘𝑑 .
• Case IV:Neither of the cases I and II happen until c1’s provider

chain reaches height ℎ + 𝑘𝑑 . Client c2 observes a correct times-

tamp ts2 for 𝐵2 or its descendants on its provider chain at a

height less than ℎ + 𝑘𝑑 , and every block timestamped by ts2 is
available and valid in c2’s view.

If cases I, II or III happen, c2 sends timestamps to the provider

chain for all of the blocks within its canonical consumer chain that

follow the last consumer block with a correct timestamp on the

provider chain at least before ℎ, i.e., at least all blocks following 𝐵0.

Then, we can deduce the following:

• (1 and I), (1 and II), (1 and III), (2 and I), (2 and II), (2 and
III), (3 and I), (3 and II), (3 and III): In these cases, all online

clients learn about the conflicting blocks 𝐵1 and 𝐵2, before the

confirmed provider chain in its view reaches height ℎ +𝑘𝑑 +𝑘𝑓 .
• (4 and I), (4 and II), (4 and III): In these cases, either c1 learns

about the conflicting blocks 𝐵1 and 𝐵2, or goes offline, before

the confirmed provider chain reaches height ℎ + 𝑘𝑑 + 𝑘𝑓 in its

view. In the latter case, c1 sends timestamps to the provider

chain for all of its consumer blocks following 𝐵0, and an online

client learns about the conflicting blocks 𝐵1 and 𝐵2 before the

confirmed provider chain reaches height ℎ + 𝑘𝑑 + 2𝑘𝑓 in its

view.

• (1 and IV), (2 and IV), (3 and IV): In these cases, either c2
learns about the conflicting blocks 𝐵1 and 𝐵2, or goes offline,

before the confirmed provider chain reaches heightℎ+𝑘𝑑+𝑘𝑓 in
its view. In the latter case, c2 sends timestamps to the provider

chain for all of its consumer blocks following 𝐵0, and an online

client learns about the conflicting blocks 𝐵1 and 𝐵2 before the

confirmed provider chain reaches height ℎ + 𝑘𝑑 + 2𝑘𝑓 in its

view.

19

• (4 and IV): In this case, both clients observe two correct times-

tamps with the same period on their confirmed provider chains

before height ℎ + 𝑘𝑑 , and the timestamps attest to either con-

flicting, unavailable or invalid consumer blocks in their views.

In this case, they both send timestamps to the provider chain

for all of their consumer blocks following 𝐵0. Then, at least

one online client learns about the conflicting blocks 𝐵1 and 𝐵2
before the confirmed provider chain reaches height ℎ +𝑘𝑑 +𝑘𝑓
in its view.

Case C: |Bc1
𝑡𝑎
| < ℎ+𝑘𝑑 and |Bc2

𝑡𝑏
| ≥ ℎ+𝑘𝑑 . In this case, c2 must have

output 𝐵2 at Line 15, Alg. 7 upon observing a timestamp ts2 ∈ Bc2
𝑡𝑏

at a height less than ℎ + 𝑘𝑑 . Then, depending on which of the four

cases 1-2-3-4 is true for c1, we investigate the following cases:

• 1-2-3 and |Bc2
𝑡𝑏
| < ℎ + 𝑘𝑑 + 𝑘𝑓 : Then, either c2 learns about

the conflicting blocks 𝐵1 and 𝐵2, or goes offline, before the

confirmed provider chain reaches height ℎ +𝑘𝑑 +𝑘𝑓 in its view.

In the latter case, an online client learns about the conflicting

blocks 𝐵1 and 𝐵2 before the confirmed provider chain reaches

height ℎ + 𝑘𝑑 + 2𝑘𝑓 in its view.

• 1-2-3 and |Bc2
𝑡𝑏
| ≥ ℎ + 𝑘𝑑 + 𝑘𝑓 : In this case, c2 observes a

timestamp on its confirmed provider chain before height ℎ +
𝑘𝑑 +𝑘𝑓 that conflicts with 𝐵2. Then, c2 does not output 𝐵2 upon
observing the timestamp ts2 ∈ Bc1

𝑡𝑏
due to the safe-stop rule 2

(Line 12, Alg. 7). Hence, this case cannot happen (w.o.p.).

• 4 and |Bc2
𝑡𝑏
| < ℎ +𝑘𝑑 +𝑘𝑓 : In this case, c1 observes two correct

timestamps on its confirmed provider chain for the same pe-

riod before height ℎ + 𝑘𝑑 , and the conflicting consumer chains

attested by the two timestamps are available and valid in c1’s
view by definition of case 4. Then, it sends timestamps to the

provider chain for all of the blocks following 𝐵0 on its canonical

consumer chain. Thus, either c2 learns about the conflicting
blocks 𝐵1 and 𝐵2, or goes offline (sending timestamps for all

of the blocks following 𝐵0 on its canonical consumer chain),

before the confirmed provider chain reaches height ℎ +𝑘𝑑 +𝑘𝑓
in its view. In the latter case, at least one online client learns

about the conflicting blocks 𝐵1 and 𝐵2 before the confirmed

provider chain reaches height ℎ + 𝑘𝑑 + 2𝑘𝑓 in its view.

• 4 and |Bc2
𝑡𝑏
| ≥ ℎ +𝑘𝑑 +𝑘𝑓 : In this case, c1 observes two correct

timestamps on its confirmed provider chain for the same pe-

riod before height ℎ + 𝑘𝑑 , and the conflicting consumer chains

attested by the two timestamps are available and valid in c1’s
view. Then, it sends timestamps to the provider chain for all

of the blocks following 𝐵0 on its canonical consumer chain,

which appear on the provider chain before it reaches height

ℎ + 𝑘𝑑 + 𝑘𝑓 . Thus, c2 does not output 𝐵2 upon observing the

timestamp ts2 ∈ Bc1
𝑡𝑏

due to the safe-stop rule 2 (Line 12, Alg. 7).

Hence, this case cannot happen.

Case D: |Bc1
𝑡𝑎
| ≥ ℎ +𝑘𝑑 and |Bc2

𝑡𝑏
| < ℎ +𝑘𝑑 . This is the same as case

C, with the roles of c1 and c2 reversed.
Finally, we observe that in all possible cases, an online client c

learns about the conflicting blocks 𝐵1 and 𝐵2 at the same height ℎ′,
along with either (i) sufficient evidence to identify the adversarial

validators that have confirmed the two blocks in the case of smart

contracts, or (ii) two quorums of 2𝑓 + 1 height ℎ′ finality signatures
⟨Final, ℎ′, 𝑖𝑑 (𝐵1)⟩ and ⟨Final, ℎ′, 𝑖𝑑 (𝐵2)⟩ for these blocks in the case

of dumb contract, both before the confirmed provider chain reaches

heightℎ+𝑘𝑑 +2𝑘𝑓 . Upon obtaining the two quorums or the evidence

from the online client, the forensic protocol identifies 𝑓 +1 adversar-
ial validators as protocol violators either by the accountable safety

of the consumer chain, or by intersecting the two finality signature

quorums as they have satisfied the condition in Alg. 3. In the latter

case, by the extractability property (Def. 8), the forensic protocol

can extract their secret signing keys (w.o.p.), before the confirmed

provider chain reaches height ℎ + 𝑘𝑑 + 2𝑘𝑓 in c’s view. Then, in
either case, c sends a slashing transaction to the bond contract,

which is confirmed in the provider chain before it reaches height

ℎ+𝑘𝑑 +3𝑘𝑓 ≤ ℎ+2𝑘𝑐 +4𝑘𝑓 < ℎ+𝑘𝑢 in the view of any client. Since

none of the 𝑓 +1 validators identified by the forensic protocol could
have spent their stake before the provider block at height ℎ+𝑘𝑢 due

to the timelock, 𝑓 + 1 adversarial validators get slashed. Morever,

in the case of dumb contracts, since honest validators send at most

one finality signature per height, for any honest validator, given the

set𝑄 of message, height, signature tuples returned by the validator,

∀(ℎ, 𝐵, 𝐵′) such that (𝑖𝑑 (𝐵), ℎ, .) ∈ 𝑄 ∧ (𝑖𝑑 (𝐵′), ℎ, .) ∈ 𝑄 , it holds
that 𝑖𝑑 (𝐵) = 𝑖𝑑 (𝐵′). Thus, by Defs. 2 and 7, no honest validator’s

stake can be slashed in either of the smart or dumb contract cases.

Therefore, the remote staking protocol satisfies (𝑓 + 1)-economic

safety. □

H PROOF OF THEOREMS 4 AND 10
For the liveness result below, we assume a synchronous network or

a partially synchronous network, where GST is sufficiently bounded.

An arbitrarily large GST would prevent liveness of the underlying

consumer chain protocol for extended durations, during which the

validators assigned to the pending period of𝑚 consumer blocks

could unbond on the provider chain before the period is completed,

which can only happen after GST. This issue can be avoided if the

honest validators can designate when they would like to withdraw

as in the smart contracts case and opt to remain as part of the

validator set.

We also assume that the number𝑚 of heights at each consumer

chain period is large enough; such that every period has at least

one honest proposer w.o.p. If𝑚 is small, the proof remains mostly

unchanged, except that the inductive step argument on the presence

of an honest proposer in period𝑚 would have to refer to sufficiently

many consecutive periods preceding𝑚.

Proof of Theorems 4 and 10. Based on Proposition 1, we prove

liveness by induction on the periods of consumer blocks extending

the genesis block 𝐵0. Let ℎ denote the height of the provider block

𝑏0 referred by 𝐵0, and suppose the height of the longest confirmed

provider chain held by the clients is ℎ at the start of the protocol

execution. Over 2𝑓 + 1 validators within the initial validator set 𝑆0
are honest.

Induction Hypothesis: Only a single valid consumer block

can become confirmed (and gather 2𝑓 + 1 finality signatures in the

case of dumb contracts) at any height of period𝑚. Safe-stop rules

cannot be triggered for any client by the timestamps from periods

1, . . . ,𝑚. Correct timestamps of the available and valid consumer

blocks from period𝑚 appear on the provider chain.

Base step: Only a single valid consumer block can be confirmed

(and gather 2𝑓 + 1 finality signatures) at any consumer chain height

20

Remote Staking with Economic Safety

of the first period. Moreover, all timestamps sent to the provider

chain attest to available and valid blocks, since the number of ad-

versarial validators within 𝑆0 is at most 𝑓 ; and the safe-stop rule

1 rule cannot be triggered for any client. Therefore, all consumer

blocks of period𝑚 = 1 become confirmed (and gather 2𝑓 + 1 final-
ity signatures) within Θ(𝑇

cf
) time by the security of Tendermint

([15, Lemmas 3, 4, 7]), during which the confirmed provider chain

advances less than 𝑘𝑐 blocks in the view of any client. Thus, by

the time all relevant honest validators have entered period 2, the

highest provider block 𝑏1 referred by the consumer blocks of the

first period is at height at least ℎ, and is at most 𝑘𝑐 deep in the

confirmed provider chain of any client. As 𝑘𝑐 < 𝑘𝑢 , no validator

could have unbonded by this time. Furthermore, a timestamp of

the blocks in the first period appears on the confirmed provider

chains of all clients before height ℎ+𝑘𝑐 +𝑘𝑓 < ℎ+𝑘𝑑 , and all blocks
attested by the timestamps of the first period are available, valid

and consistent; implying that the clients keep outputting confirmed

consumer blocks, and the safe-stop rule 2 cannot be triggered for

any client.

Inductive step: Suppose that by the time all relevant honest

validators have entered period𝑚, the highest provider block 𝑏𝑚−1
(at height ℎ𝑚−1) referred by the blocks within the past periods

1, . . . ,𝑚 − 1 is at most 𝑘𝑐 deep in the confirmed provider chain of

any client. Also assume that the safe-stop rules cannot be triggered

for any client by the timestamps with periods 1, . . . ,𝑚−1, and there
is a single chain of available, valid and confirmed consumer blocks

for the periods 1, . . . ,𝑚−1 in all clients’ views. At least 2𝑓 +1 of the
validators assigned to period𝑚 are honest by assumption. Therefore,

only a single valid consumer block can become confirmed (and

gather 2𝑓 +1 finality signatures) at any height of period𝑚. Moreover,

all timestamps sent to the provider chain attest to available and

valid blocks, since the number of adversarial validators within the

validator set for period 𝑚 is at most 𝑓 ; and the safe-stop rule 1

cannot be triggered for any client by timestamps with period𝑚.

All consumer blocks of period𝑚 become confirmed (and gather

2𝑓 + 1 finality signatures) within Θ(𝑇
cf
) time by the security of

Tendermint ([15, Lemmas 3, 4, 7]), during which the confirmed

provider chain advances less than 𝑘𝑐 blocks in the view of any client.

As 𝑘𝑐 < 𝑘𝑢 , no validator could have unbonded during this time.

Since one of the block proposers at each period is honest (w.o.p.) and

refers to the tip of its provider chain, by the time all relevant honest

validators have entered period𝑚 + 1, the highest provider block 𝑏𝑚
referred by the consumer blocks of periods 1, . . . ,𝑚 is at most 𝑘𝑐
deep in the confirmed provider chain of any client. Furthermore,

a timestamp of the blocks in period𝑚 appears on the confirmed

provider chain of all clients before height ℎ𝑚−1 + 2𝑘𝑓 +𝑘𝑐 < ℎ +𝑘𝑑 ,
and all blocks attested by the timestamps of period𝑚 and earlier

periods are available, valid and consistent; implying that the clients

keep outputting confirmed consumer blocks, and the safe-stop rule

2 cannot be triggered for any client.

Finally, since there is an honest block among the 𝑚 finalized

blocks of any periods w.o.p., safe-stop rules cannot be triggered

for any client, and correct timestamps of the available and valid

blocks from each period appear periodically on the provider chain.

Therefore, liveness is satisfied w.o.p. Note that in this normal path,

validators do not send extra timestamps to the provider chain as

cases 1-3-4 in the proof of Theorems 3 and 9 are never triggered. □

21

	Abstract
	1 Introduction
	1.1 Proof-of-stake Security
	1.2 Native vs Remote Staking
	1.3 Contributions
	1.4 Security Properties
	1.5 Protocol Overview
	1.6 Implementation

	2 Related Work
	2.1 Accountability and Slashing
	2.2 Finality Gadgets
	2.3 Accountable Assertions and DAPS
	2.4 Covenants

	3 Preliminaries
	3.1 Model
	3.2 Double-authentication-preventing Signatures
	3.3 The Provider Chain and Bitcoin
	3.4 Tendermint

	4 Remote Staking Protocol with Smart Contracts
	4.1 Bonding, Unbonding and the Validator Set
	4.2 The Timestamping Protocol
	4.3 Economic Security

	5 Remote Staking Protocol with Dumb Contracts
	5.1 Tendermint with Finality Gadgets
	5.2 Slashing Validators with the Bond Contract
	5.3 Supporting Dynamic Stake

	6 Implementation
	References
	A Tendermint in a Nutshell
	B The Timestamping Protocol
	B.1 Determining the Validator Set
	B.2 Bonding and Unbonding
	B.3 Timestamping on the Provider Chain
	B.4 Block Output Rules (Alg. 7)
	B.5 Enforcing Slashing on the Provider Chain

	C Formal Definitions for the Properties of DAPS
	C.1 Correctness
	C.2 Existential Unforgeability
	C.3 Extractability

	D Lack of Accountable Safety in Tendermint
	D.1 Accountable Safety for Tendermint
	D.2 Lack of Accountable Safety under Partial Synchrony
	D.3 Lack of Accountable Safety under Synchrony
	D.4 Tendermint Made Accountably-safe

	E Proof of Theorem 11
	F Proof of Theorem 12
	G Proof of Theorems 3 and 9
	H Proof of Theorems 4 and 10

