
DeCl: Deterministic and Metered Native
Sandboxes
Zachary Yedidia
Stanford University

Geoffrey Ramseyer
Stanford University

David Mazières
Stanford University

Abstract
We present Deterministic Client (DeCl), a software sandboxing system for ARM64 that securely
runs untrusted machine code at near-native speeds while guaranteeing deterministic execution and
deterministic termination after a specified instruction count.

One key application is a smart contract engine in a digital currency system, which requires both
deterministic execution and metered runtime. Today’s blockchains, for example, run bytecode in
a virtual machine, such as WebAssembly or the Ethereum Virtual Machine, which either incurs
the extremely high overhead of a software interpreter or expands the TCB to include an entire
just-in-time compiler, while still paying significant runtime overhead.

Instead, DeCl can execute smart contracts as native ARM64 programs, after validating them with
a simple and efficient verification pass. The compilation and instrumentation process, to produce code
that can pass these verification checks, is entirely untrusted. DeCl incurs a geomean 16% runtime
overhead on supported SPEC 2017 benchmarks compared to native code, while WebAssembly
interpreters incur nearly 2000% overhead on the same benchmark set, and even state-of-the-art
just-in-time WebAssembly compilers incur upwards of 90% overhead.

We integrate DeCl into Groundhog, an existing smart contract engine that uses interpreted
WebAssembly, and demonstrate a significant performance improvement for compute-intensive
contracts, and minimal performance loss otherwise.

2012 ACM Subject Classification Security and privacy → Distributed systems security; Software
and its engineering → Automated static analysis

Keywords and phrases Smart Contract Performance, Sandboxing, Determinism

1 Introduction

Smart contracts serve as the foundation for extensible digital currencies. In order to work
on a blockchain, smart contracts must be deterministic and have bounded execution time.
Existing systems use custom languages like EVM bytecode and WebAssembly to enforce these
properties. For maximum performance, these languages could be compiled to machine code
using highly optimizing compilers. However, these compilers typically have bugs and cases
of pathologically slow compile times. As a result, it is not generally safe to use optimized
compilation for smart contracts, and many existing systems use interpreters instead, which
are orders of magnitude slower than optimized native code. Even JIT compilers such as
Cranelift that are designed to accept malicious code are large and complex, and face a
tradeoff between performance and security: adding more optimizations means increasing the
possibility of a vulnerability. No prior systems are able to safely run smart contracts directly
as highly optimized native code.

We present Deterministic Client (DeCl), a sandboxing system that makes bare-metal
smart contracts possible. With DeCl, smart contracts are expressed directly as ARM64
machine code, which can be executed natively on cloud servers such as AWS Graviton [22]



2 DeCl: Deterministic and Metered Native Sandboxes

or Ampere Altra [12, 27], and personal computers such as Apple Macs. DeCl uses a machine
code verifier to ensure that the ARM64 code loaded into a sandbox is isolated, deterministic,
and metered. This trusted verifier uses a simple linear-time algorithm to determine whether
an ARM64 program should be accepted or rejected. The compilation and intrumentation
process, to produce code that can pass verification, is entirely untrusted. As a result, highly
optimizing ahead-of-time compilers such as LLVM can be used without compromising the
security of the system.

DeCl is built on top of a prior sandboxing system called Lightweight Fault Isolation (LFI)
[41]. We show how to extend LFI to enforce that untrusted native code is both deterministic
and preemptable, with two primary innovations:

1. Position-oblivious code (POC), an extension to LFI that makes programs deterministic no
matter where in the address space they are loaded. This extension works by preventing
programs from directly reading their own absolute addresses, and only allowing offsets
from a base address to be read.

2. Two approaches for deterministic metering, so that programs are preempted before
a maximum number of instructions have been executed. Crucially, this preemption
is deterministic, meaning that programs always produce the same result, even when
preempted.

DeCl’s deterministic metering works by keeping a count of the program’s remaining “gas”
in a reserved register. This register must be updated and checked at specific places in the
program (such as before branch instructions). Unfortunately, these checks result in additional
overhead. We present several optimizations to decrease this overhead. When running
supported benchmarks from SPEC 2017, DeCl incurs a geomean runtime overhead of around
16% compared to native code, when using the most efficient metering scheme. For comparison,
all existing approaches use either interpreters or JIT compilers with metering support, which
incur overheads of roughly 2000% and 90% respectively (as measured on SPEC 2017 using
WebAssembly implementations). On top of the performance benefits, DeCl’s machine code
verification approach is significantly simpler (and therefore more secure) compared to JIT
compilation. We propose two techniques for protecting the control-flow integrity of gas
update sequences, either using aligned bundles or hardware-enforced control-flow if available.

We integrate DeCl into Groundhog [32], a scalable smart contract engine that currently
uses a WebAssembly interpreter. Using native code for smart contracts allows them to run
significantly faster and to have access to hardware SIMD and cryptography intrinsics. Since
smart contracts are generally short-lived, we made significant optimizations to achieve a
sandbox startup latency of roughly 30µs, and we ensured that loading sandboxes does not
interfere with Groundhog’s scalability.

The rest of the paper is organized as follows: Section 2 explains LFI, the sandboxing
foundation upon which DeCl is built. Section 3 describes the position-oblivious code extension
to LFI, which makes programs deterministic no matter where in the address space they
are loaded. Section 4 describes our approaches for deterministic metering: branch-based
and timer-based metering. Section 5 describes our implementation, and other modifications
needed to enforce determinism on top of LFI. Section 6 evaluates DeCl on the SPEC 2017
benchmark suite. Section 7 describes and evaluates DeCl’s integration into Groundhog.
Finally, Section 8 summarizes related work.



Z. Yedidia, G. Ramseyer, D. Mazières 3

2 Background

2.1 Threat Model
In this work we are concerned with adversarially enforcing determinism. An untrusted party
provides a program expressed as ARM64 machine code, and it should only be accepted if it is
guaranteed to be deterministic. The system must reject programs that are non-deterministic,
and may reject programs if it cannot determine whether or not they are deterministic.
Nonetheless, we would like to be able to accept a wide variety of programs, while imposing
minimal performance overhead.

We also require that the programs that run inside DeCl are metered, and therefore cannot
use more than a limited amount of CPU time. This requirement when combined with
the determinism requirement requires special design, since the preemption must happen
in a deterministic way. The runtime system is initialized with a limit on the number of
instructions that can be executed before preemption occurs.

We assume the following properties about the runtime system, which are typical for smart
contract engines:

1. The runtime does not provide any support for shared-memory multiprocessing.
2. The runtime provides a set of deterministic “runtime calls” to the sandbox that it may

use to interact with the runtime.

As part of enforcing determinism, the sandboxed program must not be able to access data
outside its specific memory region, which is deterministically initialized. This requires some
form of memory isolation. Since many smart contracts are short-lived programs, startup
time is performance-critical and we therefore require a memory isolation scheme that can
support fast startup and teardown. For this reason, we have chosen to use software isolation
by building on top of LFI, although in principle DeCl could be used in combination with a
hardware-based protection mechanism as well.

2.2 Lightweight Fault Isolation
Lightweight Fault Isolation (LFI) is a sandboxing system for ARM64 that uses software-
based fault isolation (SFI). Programs that execute within LFI are restricted to a 4GiB
region of contiguous virtual memory that they may access, and may not execute system call
instructions, or other instructions deemed “unsafe.” These restrictions are enforced via a
static verifier that analyzes the machine code of untrusted programs. Importantly, in the
ARM64 encoding every instruction is a fixed 4-byte value and must be aligned, meaning
machine code can be accurately disassembled without needing to protect against malicious
programs that might jump into the middle of an instruction.

The basic LFI scheme allocates each sandbox at an address aligned to 4GiB. Several
registers are reserved for special use:

x21: stores the base address of the sandbox.
x18: always contains an address within the sandbox.
x30: always contains an address within the sandbox.
sp: always contains an address within the sandbox.

Note that ARM64 has 32 64-bit integer registers (x0-x30 and sp), which can also be
accessed via names that only access the bottom 32 bits (w0-w30 and wsp). When wN is
written, the top 32 bits of xN are set to zero.



4 DeCl: Deterministic and Metered Native Sandboxes

The static verifier will reject any program that contains instructions that modify reserved
registers without maintaining their invariants. For example, the only way to modify x18
is via an instruction that guarantees that the resulting value stored in x18 is within the
sandbox (i.e., has the same top 32 bits as those in x21). The following instruction can be
used for this purpose:

add x18, x21, wN, uxtw

This instruction takes the 32-bit value wN (namely the low 32 bits of xN), treats it as
an unsigned 32-bit value before extending it to 64 bits (specified by the uxtw modifier),
adds the extended value to register x21, and stores the result in x18. Since x21 contains the
4GiB-aligned base address of the sandbox region, the sum stored to x18 is guaranteed to be
within the sandbox, regardless of the value of xN.

Since x18 is always guaranteed to hold a valid address within the sandbox, it is safe to
perform loads or stores such as ldr xN, [x18]. LFI includes multiple optimizations not
discussed in detail here. The most important is the use of the 32-bit addressing mode, that
effectively allows the safe add from above to be performed as part of a load/store instruction
with no additional overhead. The instruction ldr xN, [xM] can be transformed into the
safe equivalent ldr xN, [x21, wM, uxtw], which incurs no overhead.

Each sandbox is allocated 4GiB of virtual memory, with 80KiB guard regions (unmapped
pages) placed at the start and end of the sandbox. These guard pages are necessary to
prevent loads and stores from neighboring sandboxes, since ldr xN, [x18, #i] is a legal
load of the address x18 + i. Due to the instruction encoding, the immediate, #i, can be
at most 65536, and thus such a load cannot access beyond a neighboring sandbox’s guard
region.

The LFI static verifier is a simple program that performs a single linear pass over a
compiled binary to determine if it is safe to run. LFI is a particularly attractive sandboxing
system compared to language-based systems for smart contract or other security-critical
settings because the simplicity of the verifier reduces the size of the trusted code base
(TCB). Existing smart contract systems leave a significant amount of performance on
the table, because they generally rely on either slow (but simple) interpreters, or JIT
compilers specifically hardened against malicious inputs [4] that, by design, apply only simple
optimizations.

3 Position-Oblivious Code

Static machine code is linked to execute at a particular address. Position-independent
code is code that can be executed regardless of the address where it was loaded. Typical
LFI programs are position-independent. However, these programs may still determine the
position at which they were loaded by reading addresses of functions, heap variables, or stack
variables. This means that the load address of a position-independent program is a source
of non-determinism: a position-independent program may behave differently depending on
where it was loaded. Since all sandboxes are loaded in the same address space in LFI, this is
a problem for supporting multiple deterministic sandboxes.

To solve this problem, we introduce position-oblivious code (POC): programs that cannot
determine their load address. A position-oblivious program may be loaded at any address,
and its result is guaranteed to have no dependence on that load address. A program can be
verified to be position-oblivious by a static verifier before it is loaded.



Z. Yedidia, G. Ramseyer, D. Mazières 5

Position-oblivious code works by building on the LFI technique. In LFI, every memory
access is already preceded by a guard that forces the address to be in-bounds by inserting a
constant into the top 32 bits of the address. Valid addresses are stored in reserved registers
to ensure they are not tampered with. We take this further with position-oblivious code by
statically verifying that absolute addresses are never directly observed. The verifier ensures
that reserved registers, which may contain absolute addresses, are only ever accessed via
their bottom 32 bits (i.e., w30 instead of x30). Thus, the program may only directly observe
offsets from the base address. Since the absolute sandbox base address can never be observed,
the program is oblivious to where it was loaded.

For example, the following sequence is used to store the return address (x30) into the
address offset stored in x0. This is usually performed as str x30, [x0], but with LFI and
position-oblivious code it becomes:

mov w22 , w30
str x22 , [x21 , w0 , uxtw]

As another example, moves from the stack pointer, such as mov x0, sp, are rewritten to
read only the 32-bit subset of sp:

mov w0 , wsp

Absolute addresses that contain the correct top 32 bits identifying the sandbox location
are only stored in reserved registers that are verified to never be directly observed. Before
accessing a memory location, the top 32 bits are always set to the correct value, and only
the bottom 32 bits of a reserved register may be read.

The verifier also ensures that any instructions that produce an address dependent on the
program counter (the adr and adrp instructions) place the result in a reserved register. If
the application would like to use the result, it be required to read from the bottom 32 bits of
the reserved register. For example the typical operation to load the address of a global via a
PC-relative offset, adr x0, foo, would instead be expressed as:

adr x18 , foo
mov w0 , w18

These additional constraints primarily affect only three situations: storing the return
address on the stack, loading the address of a global, and loading the value of the stack
pointer to perform arbitrary computation. Compared to the frequency of loads/stores, these
cases are relatively rare, and as a result the additional overhead imposed is minor.

When implementing a runtime with POC support, care must be taken so that the runtime
does not reveal a sandbox’s true addresses. For example, pointers returned from runtime
calls must have their top 32 bits zeroed. Since POC programs behave the same no matter
where they are loaded, they are compatible with a POSIX fork API, even though they all
exist within the same hardware address space.

4 Deterministic Metering

By default, there are no constraints on the amount of CPU time that may be consumed by
an LFI program. To prevent an LFI program from taking over the CPU, we use a notion
of “metering,” also known as “gas.” The program continues running until there is no more
gas in the meter, at which point it is preempted. A typical LFI runtime would implement
this by using timer interrupts. However, this is not directly applicable for use-cases that



6 DeCl: Deterministic and Metered Native Sandboxes

require determinism. When using timer interrupts, the particular instruction that will be
interrupted next is not deterministic because it depends on factors such as the precision of
the timer and the execution time of each instruction. If two replicas run the same program
but use timers for preemption, one replica might halt the program before a side-effecting
instruction (such as a runtime call), while the other might halt it afterwards, causing the
replicas to see different results from the same program.

A deterministic alternative to timing is to keep an instruction count. By generating an
interrupt after N instructions have executed, programs can be deterministically preempted.
The performance monitoring unit (PMU) in Arm processors can be used to generate interrupts
based on instruction counts. However, complete determinism is not guaranteed by the
architecture. The architecture states that a “reasonable degree of inaccuracy in the counts
is acceptable.” Furthermore, the term reasonable degree of inaccuracy is explicitly left
undefined, though the architecture does give guidelines stating that under normal operations
the counters must be accurate. While individual microarchitectures may have deterministic
instruction counts, this guarantee is not strong enough to rely on the PMU for deterministic
preemption. In our testing, the PMU instruction counter cannot be used to deterministically
generate signals within a Linux process running on Apple silicon.

Rather than rely on the PMU for deterministic metering, we propose an extension
to LFI that manually tracks metering via additional instructions that must be included
in a sandboxed program. At a high level, these extra instructions debit a gas counter
register (x23) according to the number of instructions executed and use this gas counter to
cause deterministic termination, either via an indirect branch into the LFI runtime or via
preemption from a timer. We will refer to these two mechanisms as branch-based and timer-
based metering respectively. While timer-based metering makes use of a non-deterministic
timer, it is used in combination with the gas counter to make preemption deterministic.

Furthermore, since we are enforcing metering directly on machine code programs, the
metering schemes are designed so that a static verifier can efficiently verify that the proper
instructions are included in the program to allow for preemption. The verifier must be certain
that there is no way to execute a branch instruction without also executing the immediately
preceding metering instructions. This could happen if a previous branch or jump skipped
over the metering instructions and directly targeted a branch. There are two mechanisms
that we consider to prevent this scenario: aligned bundles and branch target identification
(BTI). Since aligned bundles do not require any modern hardware features (unlike BTI), we
primarily discuss and evaluate aligned bundles as the preferred approach. These schemes
can be easily adapted to use BTI if it is available.

4.1 Aligned Bundles
The aligned bundles approach splits a program into bundles of N bytes, each starting at
an address divisible by N . Padding is introduced into the binary so that every basic block
begins at an aligned address. All direct branches in the program are verified to target the
beginning of a bundle, and all indirect branches are forced by the verifier to target the
beginning of an aligned bundle via the use of a reserved register (x24) that must contain
a bundle-aligned address. The verifier will only accept indirect branches that target x24,
and will only accept instructions that modify x24 by zeroing the bottom log(N) bits from
x18 (which must contain a valid address). Since all branches must target the beginning of a
bundle, it is impossible to execute an instruction at the end of a bundle without executing
the instructions at the beginning.

For branch-based metering we use 16-byte (4-instruction) bundles, and for timer-based



Z. Yedidia, G. Ramseyer, D. Mazières 7

metering we use 8-byte (2-instruction) bundles. Since ARM64 is a fixed-width instruction
set, it is always desirable to make bundles as small as possible to reduce padding.

Aligned bundles are convenient because they don’t require any special hardware support
and allow for an efficient verifier. However, they introduce padding, and cause some runtime
overhead for the additional alignment instruction needed for indirect branches.

4.2 Branch Target Identification

Another approach for control-flow enforcement is to use Arm’s Branch Target Identification
(BTI) extension. BTI requires that all indirect branches target a special bti instruction. If
an indirect branch lands on a non-bti instruction, the processor traps. The BTI extension
does not apply to return instructions, even though they are a type of indirect branch, since
call stacks are meant to be validated with Arm’s pointer authentication extension instead.
However, since pointer authentication only provides a probabilistic guarantee of correctness,
we instead rewrite all return instructions into indirect branches, and place bti instructions
at return sites.

This approach has the benefit of not introducing alignment instructions for indirect
branches or additional padding (except for additional bti instructions), but involves rewriting
return instructions, which comes at a slight performance cost (we measured around 4%).
This approach also requires hardware support for the BTI extension, which is available on
Apple M2 processors, but not yet on most cloud servers.

A hybrid approach is also possible, where aligned bundles are still used, but only for the
targets of direct branches, and BTI is used for indirect branches. This keeps direct branches
easy to verify (just check the alignment of the target), and avoids having to use an alignment
instruction for indirect branches.

4.3 Branch-based Metering

Branch-based metering keeps an instruction meter in a reserved register (x23). The verifier
enforces that every basic block ends with instructions that decrease the meter by the number
of instructions executed in the block, and check that the meter has not reached zero.

In general, detecting basic blocks in machine code is not possible because indirect
branches may jump anywhere in the program. However, we do not need fully precise basic
block analysis in order to provide metering, so long as any imprecision is conservative and
deterministic. Consider a program without indirect branches; in this case all basic blocks
are known statically, and we can charge the correct amount of gas at the end of each basic
block. Now, if the program includes indirect branches, those branches may arrive somewhere
within an existing basic block. The program will then be charged as if the entire basic block
executed, even if it was only partially executed due to an indirect branch arriving in the
middle. This may deterministically overcharge the program, but that is safe and only means
the program terminates sooner.

To remove this imprecision, the program could split its basic blocks at indirect branch
targets. Splitting a basic block into two is always legal, and allows the program to avoid
overcharging itself even with indirect branches.

As shown in Figure 1, a 3-instruction metering epilogue must be inserted at the end of
every basic block. This epilogue decreases the instruction meter and then checks if the top
bit of the count has become 1. If so, the meter has underflowed and an indirect branch to the
LFI runtime entrypoint (stored in reserved register x25) is executed. Due to the encoding of



8 DeCl: Deterministic and Metered Native Sandboxes

. bundle_lock
sub x23 , x23 , #n
tbz x23 , #63, .OK
blr x25
.OK: <branch >
. bundle_unlock

(a) Direct branches.

bic x24 , x18 , 0xf
. bundle_lock
sub x23 , x23 , #n
tbz x23 , #63, .OK
blr x25
.OK: br x24
. bundle_unlock

(b) Indirect branches.

Figure 1 Instruction sequences for branch-based metering, where n denotes the number of
instructions in the immediately preceding basic block.

the subtract instruction, it is impossible to both underflow and have bit 63 of x23 equal to
zero (the immediate cannot be large enough).

Indirect branches must use register x24, which is guaranteed to contain a valid address
that is bundle-aligned. As a result, all branches are guaranteed to target the beginning
of a bundle. To maintain x24’s invariant, the only legal way to modify x24 is with the
instruction bic x24, x18, 0xf, which transfers a value from x18 (already guaranteed to be
a valid sandbox address) to x24 while also masking the bottom 4 bits to make the address
bundle-aligned.

4.3.1 Gas check elision
The expensive part of the basic block epilogue is the branch instruction that checks for
underflow. Fortunately, we can optimize away this check if the basic block does not end with
a backwards branch. Consider a program of size N where a basic block that ends with a
forwards branch exhausts all remaining gas, and no check is performed. Within at most
N instructions, the program must either execute a backwards branch, causing a gas check,
or terminate because no instructions remain. Thus, if the basic block exhausts all gas, the
program will terminate after at most N further instructions.

In fact, the program must terminate within at most N − I further instructions, where I

is the address of the end of the basic block. Thus, if the size of N is a concern, the verifier
could choose to only allow gas check elision for forwards branches that are close to the end
of the program—i.e., ones with high values of I. Alternatively, the verifier could require
at least one branching gas check to occur every M instruction for some M ≪ N . However,
our basic approach is just to cap the value of N at a reasonable and small amount such as
10M instructions (40 MiB of code) and elide all gas checks for forwards branches. An M2
processor can typically execute this many instructions in under 5 milliseconds.

4.4 Timer-based Metering
Timer-based metering uses a timer interrupt in combination with the gas counter to enable
deterministic preemption. This metering scheme relies on the insight that a program running
in a DeCl sandbox can only have externally visible effects when it makes a runtime call. As
long as the program does not make any externally visible changes after it runs out of gas, it
does not need to be immediately preempted. Thus, timer-based metering works as follows:

A timer interrupt is configured to fire frequently.
When the program makes a runtime call, it is terminated if its gas is negative.



Z. Yedidia, G. Ramseyer, D. Mazières 9

. bundle_lock
sub x23 , x23 , #n
<branch >
. bundle_unlock

(a) Direct branches.

bic x24 , x18 , 0x7
. bundle_lock
sub x23 , x23 , #n
br x24
. bundle_unlock

(b) Indirect branches.

Figure 2 Instruction sequences for timer-based metering.

When a timer interrupt occurs, the program is terminated if its gas is negative.

Since the runtime always checks the gas before applying the effects of a runtime call,
it is impossible for a program to have any effect after it runs out of gas, even though it
may continue running for a non-deterministic amount of time. To an external observer, the
program behaves deterministically. Of course, this scheme assumes that a runtime call is the
only way to cause an externally visible effect—if instead the memory state of the program
were also externally visible, this would no longer work.

This scheme also assumes the time slice is short enough such that after running out of gas
it is impossible to underflow the gas counter back to a positive number before the next timer
interrupt occurs. This would require executing 263 instructions before the next time slice,
which would take roughly 29 years at a rate of 10 billion instructions per second, making
this assumption safely satisfied.

Since gas checks are only performed after interrupts or runtime calls, basic block epilogues
only need to update the gas counter, and can always omit the expensive gas check. This
makes it possible to use a bundle size of 8.

Limitations

Timer-based metering relies on the ability to configure a timer interrupt, for example by
using signals on Linux. This scheme also allows the program to use up to N seconds of CPU
time after running out of gas, where N is the size of a time slice. While timer-based metering
allows all gas checks to be elided, it can cause overhead if the time slice is too short. As
a result, branch-based metering may still be better for systems that give programs only a
small amount of gas, or that do not want to pay the cost of a trap when gas runs out.

5 Implementation

The implementation of DeCl consists of the standard set of LFI components: a program
generator, a static verifier, and a runtime implementation. This section gives an overview of
the concrete modifications to LFI needed for determinism, and how those modifications are
implemented in the system components.

5.1 Modifications to LFI

Implementing deterministic, metering sandboxes using LFI requires some minor modifications,
in addition to the position-oblivious code and metering discussed in previous sections.



10 DeCl: Deterministic and Metered Native Sandboxes

Dedicated runtime call register

LFI reserves the first page of the sandbox to store metadata about the process, including
the entrypoint for runtime calls. This allows the system to reuse x21 as the address of this
metadata page instead of reserving another register for this purpose. However, the contents
of this page are not deterministic, so the sandbox cannot be allowed to read it. Thus, DeCl
cannot use this page for metadata (DeCl simply leaves it unmapped) or the take advantage of
the associated optimization, and instead stores the runtime call table outside of the sandbox,
while reserving a a separate register (x25) to contain the address of the runtime call table
page. The verifier enforces that this register is only ever used via the instruction blr x25,
and is therefore never read by the program.

Redundant guard hoisting

Guard hoisting is an optimization used by default in the original implementation of LFI,
which reserves two registers. To avoid reserving these two additional registers, we use a
more limited form of this optimization, that simply eliminates redundant guards of the same
address without any intervening modifications to x18.

Summary

DeCl reserves 6 registers in total: the sandbox base address (x21), gas counter (x23), runtime
call table (x25), data addresses (x18), control addresses (x24), and a temporary register for
use by various sandboxing sequences (x22). The return address register (x30) and stack
pointer (sp) are also special registers that can only be modified and accessed via their bottom
32 bits.

5.2 Program Rewriter
Programs are compiled for DeCl using an assembly rewriter, which consumes the output of an
optimizing compiler and inserts additional guards and other instructions. The new metering
extension inserts sequences before branch instructions. Two create aligned bundles, we use
the .bundle directives supported by Clang and GCC, including .bundle_align_mode to
set the bundle size, and .bundle_lock/.bundle_unlock to force sequences of instructions
into the same bundle. Our implementation in GCC requires a minor change to the GNU
assembler to enabling bundling support on ARM64, which is disabled by default.

At assembly rewriting time the direction of a branch (forwards or backwards) is not
necessarily known, since the branch may target a location in another compilation unit.
As a result, we just insert a stub sequence of two/four instructions, which can apply to
forwards or backwards branches. After linking, a “post-linker” is applied, which looks for
these two/four-instruction sequences and replaces the stub with a proper add/sub instruction
depending on the direction of the branch. Note the post-linker cannot have false positives, as
the program rewriter leaves no uninstrumented branches. In addition, for forwards branches
the post-processor removes the tbz/brk instructions that perform the gas check and replaces
them with nops.

5.3 Static Verifier
DeCl uses an additional static verifier on top of the existing LFI verifier. This additional
verifier enforces that code is position-oblivious, by verifying that reserved registers are never



Z. Yedidia, G. Ramseyer, D. Mazières 11

read directly (only via their bottom 32 bits), except when the target of the instruction is
also a reserved register. Additionally, adr/adrp instructions must target a register meant for
holding the addresses that they generate (i.e., a register whose top 32 bits cannot be read).
This is implemented as a single pass over the machine code. The verifier must also restrict
programs to a deterministic subset of ARM64, and must enforce metering, described below.

5.3.1 Enforcing Instruction Determinism
The programs accepted by the DeCl verifier must be guaranteed to execute deterministically.
Therefore they must consist only of instructions known to be deterministic, which are part of
a subset of the valid Armv8.0 instructions accepted by the existing LFI verifier. According to
our analysis of the Arm reference manual and machine-readable specification, the following
cases of non-determinism exist at the instruction level and must be excluded from our subset:

Instructions encoded with malformed SBZ/SBO (should-be-zero/should-be-one) fields
are constrained unpredictable.
Some instructions have explicitly non-deterministic semantics, such as instruction pairs
for atomic loads and stores. For example, the instruction stxr returns different values
depending on the status of the exclusive monitor, which can change based on factors such
as timer interrupts generated for the host kernel.
Unallocated instructions and instruction encodings that are undefined are excluded.

According to our analysis of the Arm ISA, the floating point instructions are deterministic.
This is corroborated by program fuzzing, which we have run on several Arm architectures to
check for determinism: Apple silicon, Arm Neoverse, Ampere Altra, and QEMU. Our fuzzer
generates multi-megabyte snapshots of deterministic instructions (random instructions that
pass verification) without branches, and ensures the end-state of the program (memory and
registers) is consistent across microarchitectures. We intend to expand the capabilities of the
fuzzer in the future.

5.3.2 Enforcing Metering
The third part of the extended verifier checks for metering. In order to validate direct
metering, the verifier must first determine the program’s basic blocks. It does so using the
typical linear-time algorithm for constructing leaders. A leader is one of:

1. The first instruction.
2. Any instruction following a branch.
3. Any instruction that is the target of a direct branch.
4. Any bti instruction.

A structure recording all leaders can be constructed with a linear pass over the machine
code.

Next, the verifier iterates through all the leaders and enforces that the correct gas update
sequence appears before the leader, or before the branch instruction if the prior basic block
ends with a branch. For branch-based metering, the gas update sequence must consist of:

sub x23, x23, #n (d1nnn2f7)
tbz x23, #63, end (b6f80057)
blr x25 (d63f0320)

end:



12 DeCl: Deterministic and Metered Native Sandboxes

The value n is calculated by the verifier based on the location of the current instruction and
the previous leader, and is verified against the the immediate in the subtraction instruction
provided by the program.

The verifier also tracks the locations of these instructions, and in a final pass ensures that
no modifications to x23 or tbz x23 instructions occur outside these areas, and that branches
do not target instructions within gas update sequences by making sure that branches correctly
target aligned bundles.

Some “basic blocks” may in fact be unreachable—for example, the padding between the
end of one function and the beginning of another. The assembly rewriter does not know
about this padding, and thus does not insert gas update sequences there. However, at
verification time, the verifier will expect this block to be metered. Our solution is to allow
basic blocks to be merged: if the verifier sees a basic block that ends without a gas update
sequence and has no terminating branch (it just falls through), then the verifier allows this
and instead forces the count of the next basic block’s gas update sequence to include these
additional instructions. This means the first basic block of a function will charge for any
additional padding between it and the previous function. This results in a very minor loss of
precision. This also allows the verifier to transparently work with versions of direct metering
of varying precision. A less precise implementation will merge more basic blocks, to gain
some performance at the cost of precision.

Additional considerations

When using BTI, the verifier must also ensure that the program contains no ret instructions.
Similarly, with aligned bundles ret x24 is the only legal return instruction. The verifier also
ensures that x25 is never accessed, except via special runtime call sequences (e.g., ldr x30,
[x25]; blr x30).

Complexity

Our implementation is built using the Capstone disassembler [11] and consists of 358 lines
of C. This is in addition to the existing LFI verifier, which is 323 lines of Rust. Thanks to
its small size, the static verifier is significantly simpler than a JIT compiler (especially one
with optimizations), and is also possibly simpler than an interpreter implementation, which
must understand and correctly implement the semantics of all instructions. By contrast, our
verifier only needs partial understanding of most instructions (e.g., is it a branch? does it
modify a register?).

6 Evaluation

We evaluate DeCl on a Mac Mini M2 with 16GB of memory running Asahi Linux 6.6.0. In
our evaluation, we measure runtime overheads caused by:

DeCl unmetered: LFI extended with position-oblivious code (POC).
DeCl: LFI extended with POC and metering.

We evaluate on the SPEC 2017 benchmark suite. Benchmarks are limited to ones that
compile with LFI: they must be written in C or C++ and be compilable with a Musl/LLVM
toolchain. We also use the SPECrate benchmarks rather than SPECspeed due to the 4GiB
memory restriction imposed by LFI (SPECspeed requires 16GiB RAM per benchmark). This



Z. Yedidia, G. Ramseyer, D. Mazières 13

0

10

20

30

40

50

502.gcc

505.mcf

508.namd

510.parest

511.povray

519.lbm

520.omnetpp

523.xalancbmk

525.x264

531.deepsjeng

538.imagick

541.leela

544.nab

557.xz
geomeanPe

rc
en

t
in

cr
ea

se
ov

er
na

tiv
e

ru
nt

im
e

(L
T

O
)

DeCl branch
DeCl timer

DeCl unmetered
LFI

Overhead on SPEC 2017 benchmarks - Apple M2

(a) Runtime overhead.

0

50

100

150

200

cpugcc

cpuxalan

deepsjeng

imagick

lbm ldecod
leela

mcf
nab

namd
omnetpp

parest
povray

x264
xz geomean

Pe
rc

en
t

in
cr

ea
se

in
te

xt
siz

e DeCl branch
DeCl timer

DeCl unmetered
LFI

Text size overhead on SPEC 2017 benchmarks

(b) Binary size overhead (text segment).

Figure 3 Overheads of basic LFI, DeCl unmetered (position-oblivious code), and DeCl with
metering.

restricts the suite to 14 benchmarks. All benchmarks are compiled with LLVM 16.0.6, with
link-time optimization (LTO) enabled.

While the programs in SPEC are compiled to be deterministic, in order to run the
benchmarks, the runtime must provide non-deterministic functions, such as system calls that
return the time. Our runtime for running SPEC provides these non-deterministic functions
for evaluation purposes. We are only running these SPEC programs with DeCl to quantify
the runtime overhead of metering. A system that actually uses DeCl for full determinism
would need to implement a custom runtime with a deterministic API of runtime calls. We
evaluate such a system in the next section (§7).

Figure 3a shows the overheads of all three configurations of DeCl: with branch-based and
timer-based metering, and unmetered. Table 1 provides a summary of the geomean overheads.
The unmetered configuration performs very similarly to unmodified LFI (8.3% versus 7.7%
overhead), since the only change is the addition of position-oblivious code, which in general
only affects code that saves return addresses or loads globals. Timer-based metering is the
most efficient form of metering, with 16.3% overhead, since it is able to omit all gas checks,
but branch-based metering is not far behind at 21.2% overhead.

Figure 3b shows the percent increase in text size. This increase is primarily caused by the
additional instructions that have been inserted, and to a lesser extent additional padding to
enable bundling for the metered versions. This measurement only includes the text segment,
so the overall binary size overhead is smaller. Geomean overheads are 16.3% (LFI), 18.1%
(DeCl unmetered), 54.9% (DeCl timer), and 90.7% (DeCl branch).

Next, we compare DeCl with the following WebAssembly engines:

Wasmtime Cranelift (fuel), version 24.0.0 [5]: a WebAssembly JIT compiler designed for
running untrusted code, with support for some optimizations and deterministic metering,
called fuel.
iwasm interpreter, version 1.3.2 [6]: a WebAssembly interpreter developed as part of the
WebAssembly Micro Runtime project. The version we run is unmetered.

We enable WebAssembly’s 128-bit SIMD extension for Wasmtime, but not for iwasm
since it is not supported in the interpreter.

These results are shown in Figure 4. DeCl significantly outperforms Wasmtime, with fuel
enabled, with over 5× lower overhead. As expected, both Wasmtime and DeCl are over an



14 DeCl: Deterministic and Metered Native Sandboxes

System Fig. 3a Fig. 4
iwasm (interpreter) - 1,920%
Wasmtime - 90.0%
DeCl branch 21.2% 15.9%
DeCl timer 16.3% 12.9%
DeCl unmetered 8.3% -
LFI 7.7% -

Table 1 Summary of geomean overheads from Figure ?? (full set of supported benchmarks) and
Figure 4 (only benchmarks supported by WebAssembly).

order of magnitude faster than the WebAssembly interpreter.
Geomean results from both sets of experiments are summarized in Table 1.

0

1000

2000

3000

4000

5000

6000

505.mcf

508.namd

519.lbm

525.x264

531.deepsjeng

544.nab

557.xz
geomeanPe

rc
en

t
in

cr
ea

se
ov

er
na

tiv
e

ru
nt

im
e

(L
T

O
)

iwasm interpreter
Wasmtime Cranelift fuel

DeCl branch
DeCl timer

DeCl vs. Wasm on SPEC 2017 benchmarks - Apple M2

(a) iwasm included in the plot.

0

50

100

150

200

250

300

350

505.mcf

508.namd

519.lbm

525.x264

531.deepsjeng

544.nab

557.xz
geomeanPe

rc
en

t
in

cr
ea

se
ov

er
na

tiv
e

ru
nt

im
e

(L
T

O
)

Wasmtime Cranelift fuel
DeCl branch

DeCl timer

DeCl vs. Wasm on SPEC 2017 benchmarks - Apple M2

(b) iwasm not included in the plot.

Figure 4 Comparison between DeCl (position-oblivious and metered LFI) and various Web-
Assembly engines.

7 Integration with Groundhog

We integrate DeCl within the existing smart contract engine Groundhog [32], replacing
the WebAssembly interpreter (wasm3 [21]) it previously used. This integration required
only minimal changes to Groundhog, as both DeCl and the WebAssembly interpreter have
approximately the same input-output behavior. Smart contracts interact with the blockchain’s
environment (for example, accessing persistent storage, or requesting metadata such as the
current block number) via a set of specific functions; DeCl replaces imported WebAssembly
functions with runtime calls.

7.1 Optimizing Startup and Teardown
A key challenge with the integration is that Groundhog is designed to scale over many CPU
cores via concurrent execution of smart contracts. Maintaining this concurrent execution is
possible with DeCl precisely because DeCl supports many separate sandboxes in the same
process. However, maintaining the scalability requires care when setting up and tearing down
sandboxes, so as to avoid contention on kernel resources. Many existing smart contracts
are also very short programs. Therefore it is additionally imperative that the process for



Z. Yedidia, G. Ramseyer, D. Mazières 15

launching and removing a sandbox be extremely fast, since the program might run for only
a hundred microseconds or less.

In the existing LFI runtime, sandboxes are loaded from ELF files and mapped into the
address space using mmap. The code and data segments are protected using mprotect. This
approach is not suitable for Groundhog, since it has high startup overheads (multiple system
calls), and is not scalable because the use of mprotect causes TLB shootdowns and possibly
other cross-core synchronization within Linux.

We solve this problem by preallocating sandboxes with code and data regions. Programs
are given 128KiB of code, with read-execute permission, and 128KiB of data, with read-write
permission. These regions are mapped only the first time a sandbox is used, and subsequently
can be reused for future sandboxes without the need for any system calls (only a memset to
zero the memory).

When a sandbox is loaded, we must write to the code region (read-execute) to load its
text segment. However, this region is not writable, and we cannot pay the cost of using
mprotect. Instead, we create an in-memory 128KiB file using Linux’s memfd API, and map it
both at the sandbox’s code region as read-execute, and also at a separate location within the
runtime as read-write. This means the runtime can write to a sandbox’s code region without
needing to change any memory protections to do so. After writing to the aliased region, the
runtime must execute an instruction cache flush on the executable region. This cache flush is
performed in usermode by running the ic ivau instruction on each cache line in the range
(performed automatically by the compiler’s __builtin___clear_cache intrinsic).

Splitting a contract’s code and data into two separate 128KiB regions requires a slight
modification to the default linkerscript used by GNU LD. We have chosen sizes for these
regions that are as small as possible, while still being usable, because these regions must be
cleared after the sandbox terminates. The throughput of the memset operation to perform
this clear can become a bottleneck if the regions become too large (such as 1MiB).

With these optimizations, the time to load, execute, and exit from an empty program is
30µs, measured on the M2 processor.

Code caching

As a further optimization, it is possible to cache a sandbox’s code and reuse it if the same
contract is launched again. This is effective for commonly used contracts like popular
ERC20-like tokens, and makes it possible to entirely skip the memset operation for the code
region. At the moment, our system does not implement this optimization.

7.2 Native Cryptography Primitives
One major benefit of DeCl over WebAssembly sandboxes for practical smart contracts is
that DeCl enables users to efficiently implement their own cryptographic primitives. Even
basic cryptography, like verifying a signature, is sufficiently expensive that most blockchains
provide runtime calls for common cryptographic operations to the smart contract environment.
This allows the expensive operations to run at the speed of native code, bypassing sandbox
overhead, but limits the operations available to smart contracts.

Ethereum [39] for example, implemented the BN254 curve [8, 28] within its smart contract
environment [33, 10]. Improvements to the cryptanalysis [20] have given this curve less
than 128-bit security, and users may wish to use a stronger cryptographic primitive, such
as BLS12-381 [7, 9, 35]. Yet applications building on Ethereum have no option to change
their cryptographic tools, precisely because deploying a new special-cased operation in an



16 DeCl: Deterministic and Metered Native Sandboxes

0

50000

100000

150000

200000

250000

300000

350000

400000

12 4 8 16 32 64

Tr
an

sa
ct

io
ns

pe
r

Se
co

nd

Number of Threads

Wasm3, Precompiled Ed25519
DeCl

Wasm3, Ed25519 in Wasm

Groundhog Performance

Figure 5 Groundhog throughput on varying numbers of threads, showing that DeCl does not
impede scalability. DeCl is much faster than Wasm when both include Ed25519 in the smart contract,
and is competitive with a version that exports the calculation to a native implementation provided
by the runtime.

already-running blockchain requires a difficult, coordinated upgrade. By contrast, DeCl
allows smart contracts to implement their own cryptographic functions inside the sandbox,
and run fast enough that little-to-no performance is lost.

Figure 5 plots the throughput of Groundhog using various sandbox environments. Each
transaction chooses uniformly at random two (of 10,000,000) accounts and sends a payment
from one to the other. Throughput is measured on batches of size 100,000. Varying this
workload (by varying the batch size, or varying contention by varying the number of accounts)
gives similar performance trends on Groundhog when using either DeCl or WebAssembly
with a precompiled Ed25519. These experiments are run on one c7gd.metal instance in an
Amazon Web Services datacenter. The system has one 64-core Graviton 3 processor and 128
GB of memory, with no hyperthreading.

Each of these transactions verifies one Ed25519 signature, and microbenchmarks show
that approximately 80 to 90% of each transaction’s runtime is spent on that computation. Yet
while the WebAssembly requires access to an Ed25519 implementation in native code in order
to achieve competitive performance, DeCl has no such requirement—all of the cryptographic
operations run within the sandbox. A smart contract developer can implement their own
signature scheme or alternative cryptographic primitive on their own, and still achieve
competitive performance. The small performance gap between DeCl and WebAssembly
(with a precompiled Ed25519) comes from the cost of initializing DeCl sandboxes. Wasm
interpreters initialize much faster.

These benchmarks use very short-lived smart contracts. DeCl also enables longer-running
contracts that perform much more computation, since they will run at least an order of
magnitude faster than in an interpreter-based system.

8 Related Work

Fast & Secure Sandboxing

Any replicated state machine that runs untrusted programs (i.e., any blockchain that uses a
smart contract system) requires a sandbox environment that both runs deterministically and
guarantees termination not just in finite time but after a deterministic number of program



Z. Yedidia, G. Ramseyer, D. Mazières 17

instructions. Bitcoin [26] achieves deterministic termination, for example, with a scripting
language without loops [3], while many other blockchains run more complex virtual machines
like WebAssembly [16], eBPF [24], or the Ethereum Virtual Machine [39]. Our approach
is a variant of Software Fault Isolation [42, 38], which instruments native code and verifies
that the code cannot escape the sandbox. We build on top of the existing Lightweight Fault
Isolation project [41].

These sandbox designs face three key challenges in practical systems, beyond the absolute
requirements of deterministic, metered execution. First, they must run as fast as possible;
any speed overhead reduces the overall throughput of the system, leading to higher fees for
end-users. Executing smart contracts is a key throughput bottleneck in some blockchains
today [17]. Techniques like optimistic concurrency control [15], speculative execution [13], or
selective transaction (re)ordering [36, 34, 31, 23, 40] can provide throughput improvements
on many workloads, but these approaches are complementary to making a faster sandbox.

Second, any sandbox must execute code securely; any possibility of reading or writing
data outside of the sandbox can introduce nondeterminism, which can cause two replicas
of a state machine (two blockchain nodes) to disagree on system state. But translating the
bytecode of a virtual machine like WebAssembly into efficient machine code is a complex task.
Security relies on the correctness of key elements of the toolchain, like the eBPF verifier or a
WebAssembly compiler toolchain, which are complex software systems that have previously
contained serious bugs [18, 1, 2]. Approaches include software bytecode interpreters, to
minimize complexity (at the cost of runtime overhead), simplifying a just-in-time compiler
[4], and formal verification of the compiler [37]. Our approach, by contrast, moves most of
the code instrumentation and sandboxing into an untrusted code translation pass, leaving
only a small portion of trusted code to verify sandbox security.

Finally, the sandboxes must startup quickly; typical smart contract use-cases invoke
many separate sandboxes in sequence, and the overall system pays at runtime the cost any
compilation steps that translate sandbox bytecode to machine code. Production blockchains
rely on interpreters or just-in-time compilers [4]. Additionally, any compiler must be hardened
against malicious input that could cause excessively slow compilation times, which limits the
set of implementable program optimizations. By contrast, our system pushes all compiler
optimizations out of the critical path and out of the trusted codebase.

Program Metering

A bytecode interpreter is easy to meter in the natural way, at the cost of high overhead.
WebAssembly programs can be metered more efficiently by instrumenting a program to
update a counter only once per basic block of the program, akin to the metering approach
in §4.3. [25] implement an instruction counter in software, using a reserved counter and
instrumenting only the backwards branches of a program. This is similar to our metering
approaches, but does not track basic block sizes since their goal was only to uniquely identify
every instruction with a pair of (address, counter). In addition, our setting is adversarial
since it must be possible to enforce that programs correctly include and track the counter.

The deterministic metering in the sandbox runtimes should approximate wall-clock time.
Mismatches introduce potential denial-of-service attacks, if adversarially exploited [30]. Good
metering metrics require precise profiling of sandbox bytecode. While wall-clock times will
always be nondeterministic on hardware, our system, by using native machine code, minimizes
the difference in abstraction between the units of metering in the sandbox and execution
time on hardware.



18 DeCl: Deterministic and Metered Native Sandboxes

Determinism

Several applications are motivated by the need for determinism. One example is for efficiently
distributing computation across many machines, as performed by gg [14]. Another example
is the Exokernel file system, XN [19], which allowed applications to supply their own
code for parsing file system data structures as untrusted deterministic functions or UDFs.
Determinism is required to ensure that an inode always claims ownership of the same disk
blocks—otherwise, a maliciously crafted inode could point to the correct blocks when initially
written to disk, then later appear to own blocks belonging to a different file. DeCl provides
a more efficient alternative to UDFs.

Record and replay systems, such as RR [29], can run unmodified programs in a determin-
istic way. These work by running a program and capturing the results of any non-deterministic
operations. Then the program can be deterministically replayed. However, this setting
is non-adversarial and does not provide bounded termination or careful isolation. These
systems typically use ptrace, which can significantly hinder performance due to high system
call overheads.

9 Conclusion

This work presents Deterministic Client (DeCl), a software sandboxing system that enforces
that sandboxes are deterministic, metered, and run at near-native speeds. We explain how
DeCl is built on top of Lightweight Fault Isolation (LFI) by providing two novel extensions:
position-oblivious code, and deterministically metered native code. DeCl uses a machine code
verifier that enforces these properties, which is implemented as a linear-time algorithm in less
than 500 lines of code. Thanks to the machine code verifier, the compiler used to generate
binaries is an untrusted component, allowing us to use LLVM without compromising security.
This allows for applications to run inside DeCl extremely efficiently yet also securely. These
properties make it possible for DeCl to run smart contracts that are written as ARM64
programs, making bare-metal smart contracts a reality. We demonstrate the feasibility of
this approach by integrating DeCl into Groundhog, a scalable smart contract engine.

References
1 CVE-2021-32629. https://www.cve.org/CVERecord?id=CVE-2021-32629, May 2021.
2 CVE-2023-26489. https://www.cve.org/CVERecord?id=CVE-2023-26489, March 2023.
3 Bitcoin wiki: Script. http://web.archive.org/web/20240401132513/https://en.bitcoin.

it/wiki/Script, 2024.
4 Cranelift. http://web.archive.org/web/20240309013343/https://cranelift.dev/, 2024.
5 Bytecode Alliance. Wasmtime, 2023. URL: https://wasmtime.dev/.
6 Bytecode Alliance. Webassembly micro runtime, 2023. URL: https://bytecodealliance.

github.io/wamr.dev/.
7 Paulo SLM Barreto, Ben Lynn, and Michael Scott. Constructing elliptic curves with prescribed

embedding degrees. In Security in Communication Networks: Third International Conference,
SCN 2002 Amalfi, Italy, September 11–13, 2002 Revised Papers 3, pages 257–267. Springer,
2003.

8 Paulo SLM Barreto and Michael Naehrig. Pairing-friendly elliptic curves of prime order. In
International workshop on selected areas in cryptography, pages 319–331. Springer, 2005.

9 Sean Bowe. Bls12-381: New zk-snark elliptic curve construction. https://electriccoin.co/
blog/new-snark-curve/, mar 2017.

https://www.cve.org/CVERecord?id=CVE-2021-32629
https://www.cve.org/CVERecord?id=CVE-2023-26489
http://web.archive.org/web/20240401132513/https://en.bitcoin.it/wiki/Script
http://web.archive.org/web/20240401132513/https://en.bitcoin.it/wiki/Script
http://web.archive.org/web/20240309013343/https://cranelift.dev/
https://wasmtime.dev/
https://bytecodealliance.github.io/wamr.dev/
https://bytecodealliance.github.io/wamr.dev/
https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/


Z. Yedidia, G. Ramseyer, D. Mazières 19

10 Vitalik Buterin and Christian Reitwiessner. Eip-197: Precompiled contracts for optimal ate
pairing check on the elliptic curve alt_bn128. Technical report, Ethereum Improvement
Proposals, 2018.

11 Capstone. Capstone - the ultimate disassembler, 2024. URL: https://www.capstone-engine.
org/.

12 Subra Chandramouli and Jamie Kinney. Expanding the tau vm family with arm-
based processors, 2022. URL: https://cloud.google.com/blog/products/compute/
tau-t2a-is-first-compute-engine-vm-on-an-arm-chip.

13 Yang Chen, Zhongxin Guo, Runhuai Li, Shuo Chen, Lidong Zhou, Yajin Zhou, and Xian
Zhang. Forerunner: Constraint-based speculative transaction execution for ethereum. In
Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems Principles, pages
570–587, 2021.

14 Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos Kozyrakis,
Matei Zaharia, and Keith Winstein. From laptop to lambda: Outsourcing everyday jobs to
thousands of transient functional containers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19), pages 475–488, Renton, WA, July 2019. USENIX Association. URL:
http://www.usenix.org/conference/atc19/presentation/fouladi.

15 Rati Gelashvili, Alexander Spiegelman, Zhuolun Xiang, George Danezis, Zekun Li, Dahlia
Malkhi, Yu Xia, and Runtian Zhou. Block-stm: Scaling blockchain execution by turning
ordering curse to a performance blessing. In Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, pages 232–244, 2023.

16 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
webassembly. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, page 185–200, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3062341.3062363.

17 Lioba Heimbach, Quentin Kniep, Yann Vonlanthen, and Roger Wattenhofer. Defi and nfts
hinder blockchain scalability. In International Conference on Financial Cryptography and
Data Security, pages 291–309. Springer, 2023.

18 Jinghao Jia, Raj Sahu, Adam Oswald, Dan Williams, Michael V. Le, and Tianyin Xu. Kernel
extension verification is untenable. In Proceedings of the 19th Workshop on Hot Topics in
Operating Systems, HOTOS ’23, page 150–157, New York, NY, USA, 2023. Association for
Computing Machinery. doi:10.1145/3593856.3595892.

19 M. Frans Kaashoek, Dawson R. Engler, Gregory R. Ganger, Héctor M. Briceño, Russell Hunt,
David Mazières, Thomas Pinckney, Robert Grimm, John Jannotti, and Kenneth Mackenzie.
Application performance and flexibility on exokernel systems. In 16th, pages 52–65, Saint-Malo,
France, October 1997. ACM.

20 Taechan Kim and Razvan Barbulescu. Extended tower number field sieve: A new complexity
for the medium prime case. In Annual international cryptology conference, pages 543–571.
Springer, 2016.

21 Wasm3 Labs. Wasm3, 2024. URL: https://github.com/wasm3/wasm3.
22 Michael Larabel. Amazon graviton3 vs. intel xeon vs. amd epyc performance, 2022. URL:

https://www.phoronix.com/review/graviton3-amd-intel.
23 Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. Aria: a fast and practical deterministic

oltp database. 2020.
24 Steven McCanne and Van Jacobson. The bsd packet filter: A new architecture for user-level

packet capture. In USENIX winter, volume 46, pages 259–270, 1993.
25 John M Mellor-Crummey and Thomas J LeBlanc. A software instruction counter. ACM

SIGARCH Computer Architecture News, 17(2):78–86, 1989.
26 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

https://www.capstone-engine.org/
https://www.capstone-engine.org/
https://cloud.google.com/blog/products/compute/tau-t2a-is-first-compute-engine-vm-on-an-arm-chip
https://cloud.google.com/blog/products/compute/tau-t2a-is-first-compute-engine-vm-on-an-arm-chip
http://www.usenix.org/conference/atc19/presentation/fouladi
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3593856.3595892
https://github.com/wasm3/wasm3
https://www.phoronix.com/review/graviton3-amd-intel


20 DeCl: Deterministic and Metered Native Sandboxes

27 Paul Nash. Azure virtual machines with ampere altra arm–based pro-
cessors—generally available, 2022. URL: https://azure.microsoft.com/en-us/blog/
azure-virtual-machines-with-ampere-altra-arm-based-processors-generally-available/.

28 Yasuyuki Nogami, Masataka Akane, Yumi Sakemi, Hidehiro Kato, and Yoshitaka Morikawa. In-
teger variable χ–based ate pairing. In International Conference on Pairing-Based Cryptography,
pages 178–191. Springer, 2008.

29 Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and Nim-
rod Partush. Engineering record and replay for deployability. In 2017 USENIX
Annual Technical Conference (USENIX ATC 17), pages 377–389, Santa Clara, CA,
July 2017. USENIX Association. URL: https://www.usenix.org/conference/atc17/
technical-sessions/presentation/ocallahan.

30 Daniel Perez and Benjamin Livshits. Broken metre: Attacking resource metering in evm.
arXiv preprint arXiv:1909.07220, 2019.

31 Guna Prasaad, Alvin Cheung, and Dan Suciu. Handling highly contended oltp workloads
using fast dynamic partitioning. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pages 527–542, 2020.

32 Geoffrey Ramseyer and David Mazières. Groundhog: Linearly-scalable smart contracting via
commutative transaction semantics. arXiv preprint arXiv:2404.03201, 2024.

33 Christian Reitwiessner. Eip-196: Precompiled contracts for addition and scalar multiplication
on the elliptic curve alt_bn128. Technical report, Ethereum Improvement Proposals, 2018.

34 Pingcheng Ruan, Dumitrel Loghin, Quang-Trung Ta, Meihui Zhang, Gang Chen, and Beng Chin
Ooi. A transactional perspective on execute-order-validate blockchains. In Proceedings of
the 2020 ACM SIGMOD International Conference on Management of Data, SIGMOD ’20,
page 543–557, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3318464.3389693.

35 Yumi Sakemi, Tetsutaro Kobayashi, Tsunekazu Saito, and Riad S. Wahby. Pairing-Friendly
Curves. Internet-Draft draft-irtf-cfrg-pairing-friendly-curves-11, Internet Engineering Task
Force, November 2022. Work in Progress. URL: https://datatracker.ietf.org/doc/
draft-irtf-cfrg-pairing-friendly-curves/11/.

36 Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and
Daniel J Abadi. Calvin: fast distributed transactions for partitioned database systems. In
Proceedings of the 2012 ACM SIGMOD international conference on management of data,
pages 1–12, 2012.

37 Alexa VanHattum, Monica Pardeshi, Chris Fallin, Adrian Sampson, and Fraser Brown.
Lightweight, modular verification for webassembly-to-native instruction selection. ASPLOS,
2024.

38 Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham. Efficient software-
based fault isolation. In Andrew P. Black and Barbara Liskov, editors, Proceedings of the
Fourteenth ACM Symposium on Operating System Principles, SOSP 1993, The Grove Park
Inn and Country Club, Asheville, North Carolina, USA, December 5-8, 1993, pages 203–216.
ACM, 1993. doi:10.1145/168619.168635.

39 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

40 Yu Xia, Xiangyao Yu, William Moses, Julian Shun, and Srinivas Devadas. Litm: a lightweight
deterministic software transactional memory system. In Proceedings of the 10th International
Workshop on Programming Models and Applications for Multicores and Manycores, pages 1–10,
2019.

41 Zachary Yedidia. Lightweight fault isolation: Practical, efficient, and secure software sandbox-
ing. In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2, ASPLOS ’24, page 649–665, New
York, NY, USA, 2024. Association for Computing Machinery. doi:10.1145/3620665.3640408.

https://azure.microsoft.com/en-us/blog/azure-virtual-machines-with-ampere-altra-arm-based-processors-generally-available/
https://azure.microsoft.com/en-us/blog/azure-virtual-machines-with-ampere-altra-arm-based-processors-generally-available/
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://doi.org/10.1145/3318464.3389693
https://doi.org/10.1145/3318464.3389693
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-pairing-friendly-curves/11/
https://doi.org/10.1145/168619.168635
https://doi.org/10.1145/3620665.3640408


Z. Yedidia, G. Ramseyer, D. Mazières 21

42 Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis Ormandy,
Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A sandbox for portable,
untrusted x86 native code. Communications of the ACM, 53(1):91–99, 2010.


	1 Introduction
	2 Background
	2.1 Threat Model
	2.2 Lightweight Fault Isolation

	3 Position-Oblivious Code
	4 Deterministic Metering
	4.1 Aligned Bundles
	4.2 Branch Target Identification
	4.3 Branch-based Metering
	4.3.1 Gas check elision

	4.4 Timer-based Metering

	5 Implementation
	5.1 Modifications to LFI
	5.2 Program Rewriter
	5.3 Static Verifier
	5.3.1 Enforcing Instruction Determinism
	5.3.2 Enforcing Metering


	6 Evaluation
	7 Integration with Groundhog
	7.1 Optimizing Startup and Teardown
	7.2 Native Cryptography Primitives

	8 Related Work
	9 Conclusion

