
On-Chain Timestamps Are Accurate

Abstract. When Satoshi Nakamoto introduced Bitcoin, a central tenet
was that the blockchain functions as a timestamping server. In the Ethe-
reum era, smart contracts widely assume on-chain timestamps are mostly
accurate. In this paper, we prove this is indeed the case, namely that
recorded timestamps do not wildly deviate from real-world time, a prop-
erty we call timeliness. Assuming a global clock, we prove that all popular
mechanisms for constructing blockchains (proof-of-work, longest chain
proof-of-stake, and quorum-based proof-of-stake) are timely under hon-
est majority, but a synchronous network is a necessary condition. Next
we show that all timely blockchains can be suitably modified, in a black-
box fashion, such that all honest parties output exactly the same ledgers
at the same round, achieving a property we call supersafety, which may
be of independent interest. Conversely, we also show that supersafety
implies (perfect) timeliness, completing the circle.

1 Introduction

In the original Bitcoin paper [18], Nakamoto refers to Bitcoin as a distributed
timestamping server. Chain timestamps have long been assumed to correspond
to real-world time by the community. DeFi applications with more than $1B in
monthly volume rely [10] on the precision of these recorded timestamps. They
assume new transactions are not only included soon — a well-understood prop-
erty known as liveness — but also that their on-chain recorded timestamps are
not far in the past compared to real time. It is indeed the case that, in practical
blockchain deployments, honest nodes only accept blocks with timestamps up to
a short window into the future1. However, an adversary can produce a block with
a fabricated past timestamp, and can still cause this block to be accepted by the
honest nodes retroactively by, for example, cooking up a lucky slightly longer
Bitcoin chain. In this paper, we show that these fabrications cannot exceed a
certain timeliness limit, which we calculate.

We put forth the notion of timeliness, formalizing the folklore understanding
that timestamps recorded on-chain cannot deviate arbitrarily from real world
time. In particular, we define a timeliness parameter v which bounds how far in
the past a timestamp can be. Under a synchronous network, a global clock, and
honest majority, we prove this virtue materializes in all three popular flavors of
permissionless blockchains, namely proof-of-work, longest chain proof-of-stake,
and quorum-based proof-of-stake, and analytically calculate their timeliness pa-
rameter.

Blockchain systems executed in networks with delay, even when assuming a
global clock and bounded delay, allow honest parties to reach consensus, but the

1For example, this is part of the Bitcoin [19] and Ethereum [24] implementations.



2

ledgers reported by honest parties are typically merely prefixes of one another.
Under perfectly synchronized clocks, we show that any timely blockchain can be
modified to achieve exactly equal ledgers at every point in time, a property we
call supersafety, albeit with the introduction of a small confirmation delay.

The introduction of these two properties in this abstract fashion simplifies
the proofs of security of protocols built on top. For example, cross-chain con-
structions such as Babylon [20] are simpler to prove if on-chain timestamps are
used instead of block heights, but timeliness is needed to do this. Consensus
constructions which require the synchronized production of randomness, such
as Ouroboros [8, 16], can also benefit by simpler security arguments from the
abstraction of the supersafety property.
Our contributions. In this paper, we make the following contributions:

1. We introduce the notion of ledger timeliness. We prove that three exem-
plary cases of blockchain protocols (Bitcoin, Streamlet, and Ouroboros) are
timely and calculate their timeliness (Section 4). We also show that network
synchrony is required for timeliness (Section 5).

2. We build a supersafe protocol from any timely ledger. Supersafe protocols
allow parties with synchronized clocks to reach the exact same conclusion
about their ledgers at the exact same time. Conversely, we reduce from su-
persafety back to timeliness, illustrating that the two properties are morally
equivalent.

Overview of the results. An overview of the results of this paper is illustrated
in Figure 1. Our first result is proving that all popular ways of constructing
distributed ledgers are, indeed, timely, if we assume a global clock and a syn-
chronous network. The timeliness follows from an intermediate technical prop-
erty we call freshness of chains, which we prove for three protocols Streamlet,
Bitcoin Backbone, and Ouroboros, that are representatives of the three major
classes of protocols: quorum-based proof-of-stake, longest chain proof-of-work,
and longest chain proof-of-stake respectively (Section 4). The Streamlet variant
is proven in the partially synchronous setting after GST. We show that timeli-
ness before GST is impossible for protocols that are always-safe and live after
GST (Section 5). In practice, the assumption of a global clock can be relaxed
by tolerating an additional deviation in the timestamps equal to the maximum
clock deviation.

Next, we perform two simple but instructive black-box reductions that are,
perhaps, somewhat unexpected: The first reduction is from timeliness to su-
persafety (Section 6). In this reduction, we delay the reported ledger until all
transactions have timestamps enough into the past to ensure all other parties
have seen them. This allows us to achieve a remarkable property: All honest
parties report the exact same ledgers at the exact same time. In this reduction,
parties who desire supersafety for their application can individually choose to ob-
tain supersafety at the cost of additional confirmation delay, while other parties
continue to have faster confirmation and standard safety. The second reduction
is from supersafety back to (perfect) timeliness (Section 6.2). To do this, every



On-Chain Timestamps Are Accurate 3

Bitcoin
(proof-of-work)

Abstract chain virtues
CQ CG CP

Ouroboros
(proof-of-stake)

Streamlet
(proof-of-stake) Recency

Freshness Safety

TimelinessSupersafety

[14] [16]

Lem 3
Thm 3

Thm 2

[14]

Thm 1
Thm 5

Thm 6
(ν = 0)

Chain abstraction

Ledger abstraction

Fig. 1: Paper overview. Bitcoin and Ouroboros attain the abstract chain virtues
of Common Prefix, Chain Quality, and Chain Growth (top) [14, 16]. We show
that CQ and CG imply the intermediate property of recency (Lemma 3, middle).
Recency is also achieved by Streamlet (Theorem 3, middle) and is sufficient to
prove freshness (Theorem 2, middle). Freshness, together with safety, is sufficient
to prove timeliness (Theorem 1). In safe and live protocols, from timeliness we
can achieve supersafety and vice versa (Theorems 5-6, bottom).

online node reports the new transactions they see with their current timestamp,
and due to supersafety, these are the same. Some additional work is needed to
allow intermittently online nodes to catch up, which we also show.
Related work. Arguments of chain timeliness appear at the heart of various
security proofs in the blockchain literature. In the variable difficulty Bitcoin
Backbone paper [15], it is shown that the different honest parties performing
target recalculation on different chains must arrive at roughly the same result,
relying on roughly synchronized timestamps. In GearBox [9], a sharding proto-
col, shards timestamp messages on a “control chain” and such timestamps are
used to determine whether a shard is live. To do this, the authors of [9] define
the notion of a timed ledger (same as our notion of a temporal ledger), and con-
jecture that Hotstuff, Bitcoin, and Ouroboros are timely. We prove these facts.
In Babylon [20], Bitcoin is used as a secure timestamping service to provide ad-
ditional security to proof-of-stake blockchains. In the Ouroboros protocol [16],
the randomness production from epoch-to-epoch requires chopping off a suitable
number of slots, achieving a form of supersafety. We posit that the abstraction of
timeliness and supersafety into stand-alone properties can aid in simplifying the
security proofs of existing and future protocols. The blockchain itself has also
been used [1, 5] as a mechanism for clock synchronization among parties with
desynchronized and drifting clocks, a long-standing problem [17]. In our work,
we show that, if the clocks of honest parties are already synchronized, possibly



4

by using [1, 5], on-chain reported timestamps roughly correspond to real-world
time.

Previously, the community was confused about whether on-chain timestamps
are accurate. In some discussions, it was incorrectly claimed2 that all accepted
block timestamps must be within the same tolerance that honest nodes use
to accept blocks, ignoring the possibility of fabricated timestamps in blocks
produced by the adversary. On the other hand, others conjectured that on-chain
timestamps can be vastly inaccurate stating that timestamps can differ radically
from the actual time, outside the network [22]. In this work, we resolve this
confusion, derive the timeliness parameter and rigorously show the conditions
under which it holds. Supersafety, although never stated formally, was achieved
since the early days of consensus by Dolev and Strong [11]. However, contrary
to us, their construction does not support intermittently online (sleepy) clients,
and was designed for a different era of consensus, with a much smaller scale
than today’s systems in mind, poor performance, and no support for dynamic
availability.

2 Preliminaries & Model

Notation. We use [ ] to denote the empty sequence. We denote by |C| the
length of sequence C, by C[i] the ith (zero-based) element of sequence C, and
by C[−i] the ith element from the end. We use C[i:j] to mean the subsequence
of C from the ith element (zero-based inclusive) to the jth element (zero-based
exclusive). Omitting i takes the sequence to the beginning, and omitting j takes
the sequence to the end. By C1||C2, we mean the concatenation of sequences C1

and C2. We use the set notation B ∈ C to iterate through a sequence C. We use
the set builder notation [B ∈ C : p(B)] to filter the elements of sequence C that
satisfy p. We write C1 ≼ C2 when C1 is a prefix of C2 and C1 ≺ C2 to mean
that the prefix is strict. We write C1 ∼ C2 when C1 ≼ C2 ∨ C2 ≼ C1. We use κ
to denote the security parameter.
Model. Execution occurs in discrete rounds 1, 2, . . ., of polynomial number in
the security parameter κ. The protocol is executed by parties of two types: n
nodes and an unlimited number of clients. The adversary controls t of the nodes.
Nodes are always online. A client is awakened in some round by the environment,
requires a number of rounds to synchronize with the rest of the peers and may
be killed by the environment at a later round. In each round, the environment
invokes execute on all honest parties and also triggers the adversary. We assume
all parties have a global clock, meaning they can use the environment function
now() to get the current execution round. We work in two network settings:
synchrony and partial synchrony.

Definition 1 (Synchrony). A network is synchronous when all honestly pro-
duced messages are delivered with a delay of at most ∆ rounds (messages sent
during round r arrive by the beginning of round r +∆).

22016, Badr Bellaj, Is block.timestamp safe for longer time periods?, Ethereum
StackExchange.

https://ethereum.stackexchange.com/a/9752


On-Chain Timestamps Are Accurate 5

Definition 2 (Partial Synchrony). A network is partially synchronous when
the adversary can delay messages arbitrarily before a Global Stabilization Time
(GST) [12]; however after GST the network becomes synchronous.

We now turn our attention to distributed ledger protocols, of which block-
chain protocols are examples.

Definition 3 (Ledger). A ledger is a finite sequence of transactions.

Definition 4 (Distributed Ledger Protocol). A distributed ledger protocol
is an interactive Turing machine3 which exposes the following methods on each
party:

– execute(): executes a single round of the protocol, during which the machine
can communicate with the network.

– write(tx): takes transaction tx as input.
– read(): outputs a ledger.

The notation LLLP
r denotes the output of read invoked on party P at the end

of round r.

Definition 5 (Stickiness). A distributed ledger protocol execution is sticky if
for any honest party P and any rounds r1 ≤ r2, it holds that LLLP

r1 ≼ LLLP
r2 .

Definition 6 (Safety). A distributed ledger protocol execution is safe if it is
sticky and for any honest parties P1, P2 and any rounds r1, r2, it holds that
LLLP1

r1 ∼ LLLP2
r2 .

Stickiness can be easily enforced in any safe protocol without stickiness by
having the parties report the longest ledger they have seen so far [7].

Definition 7 (Liveness in Synchrony). A distributed ledger protocol execu-
tion, in a synchronous network, is live(u) if all transactions written to any honest
party at round r, appear in the ledgers of all honest parties by round r + u.

Definition 8 (Liveness in Partial Synchrony). A distributed ledger protocol
execution, in a partially synchronous network, is live(u) if all transactions written
to any honest party at round r, appear in the ledgers of all honest parties by round
max (r,GST) + u.

3 Definitions

In this work we are concerned with ledgers that record a round with every
transaction indicating the time at which the transaction in question is recorded
on the ledger.

3The ITM captures the behavior (code) of an honest party in the protocol, and
an execution contains multiple honest Interactive Turing Machine Instances (ITIs) all
running the same code [6].



6

Definition 9 (Temporal Ledger). A temporal ledger is a finite sequence of
pairs (r, tx) where tx is a transaction, and r is a round.

Definition 10 (Distributed Temporal Ledger Protocol). A distributed
temporal ledger protocol is a distributed ledger protocol in which when read is
invoked, honest parties output temporal ledgers instead of traditional ledgers.

The following property of temporal ledgers is central to this work.

Definition 11 (Timely). A distributed temporal ledger protocol execution is
timely(v) if for all honest parties P and rounds r1 it holds that:

1. The rounds recorded in LLLP
r1 are non-decreasing.

2. The round recorded at LLLP
r1 [−1] is at most r1.

3. For all r1 ≤ r2, the rounds recorded in LLLP
r2 [|LLL

P
r1 |:] are newer than r1 − v.

Timeliness is orthogonal to safety and liveness. Protocols can have any com-
bination4 of the three properties.

If a temporal ledger protocol is timely and live, then the recorded timestamp
of a transaction does not deviate much from the time at which the transaction
was written to honest parties.

Lemma 1. In a distributed temporal ledger protocol execution that is timely(v)
and live(u), if a transaction tx is written to an honest party at round r, then the
round recorded for tx in any honest party’s ledger is r′ such that r−v ≤ r′ ≤ r+u.

Proof. The round in which tx is recorded in any honest party’s ledger is between
r and r + u by liveness. The claim follows from timeliness.

Definition 12 (Perfectly Timely). We call a protocol execution perfectly
timely if it is timely with parameter v = 0.

Definition 13 (Supersafety). A distributed ledger protocol execution is su-
persafe if it is sticky and for any honest parties P1, P2 and any round r, it holds
that LLLP1

r = LLLP2
r .

All supersafe protocol executions are safe.

4 Existing Blockchains are Timely

We show that all popularly deployed flavors of blockchain protocols are timely.
The vast majority of real blockchain protocols are based on proof-of-work longest
chain (Bitcoin, Doge, Litecoin), proof-of-stake longest chain (Cardano), proof-of-
stake quorums (Algorand, Cosmos), or a mixture thereof (Ethereum, Polkadot).
As exemplary cases we prove that Bitcoin, Ouroboros, and Streamlet are all
timely, showing timeliness for each of the respective mechanisms.

4One live, timely, but not safe protocol includes all transactions received from the
network with the current round. One live, safe, but not timely protocol records round
1 for all transactions. One safe, timely, but not live protocol always reports empty
ledgers.



On-Chain Timestamps Are Accurate 7

4.1 From Chains to Ledgers

Blockchain protocols are a type of distributed ledger protocols which includes the
three flavors of protocols that we consider. In blockchain protocols, the ledger
is formed using a chain of transaction-containing blocks. Thus, properties of
the ledger can be derived from corresponding properties of the chain, which we
describe in this section. We first define temporal blockchain protocols, a subset
of blockchain protocols [21] which keep track of time.

Definition 14 ((Temporal) Blockchain Protocol). A blockchain protocol
is a distributed protocol in which, at the end of every round, each honest party
outputs a chain. A chain is a finite sequence of blocks. Each block contains a
finite sequence of transactions.

A temporal blockchain protocol is a blockchain protocol where every block
contains a recorded round.

In blockchain protocols, honest parties at every round output a chain based
on their confirmation rule5 (we also call these confirmed chains). We use CCCP

r to
denote the chain output by party P at the end of round r.

Definition 15 (Chain Safety). A blockchain protocol execution is safe if for all
honest parties P1, P2 and all rounds r1, r2, it holds that CCCP1

r1 ∼ CCCP2
r2 . Furthermore,

CCCP1
r1 ≼ CCCP1

r2 (sticky).

From Temporal Blockchains to Temporal Ledgers. Any temporal block-
chain protocol can be transformed into a temporal ledger protocol using the
following construction: When read is invoked on party P at the end of round r,
each transaction in CCCP

r is reported to LLLP
r in the same order as in CCCP

r , and with
the recorded round of the block in which it is included. We call these protocols
chain-based temporal ledger protocols. Note that an execution of the temporal
blockchain protocol corresponds to an execution of the chain-based temporal
ledger protocol. Ledger protocols based on safe blockchains are safe.

We now introduce two intermediate properties of temporal blockchains that
will help us prove timeliness of chain-based temporal ledger protocols.

Definition 16 (Consistent Recorded Rounds). A temporal blockchain pro-
tocol execution has consistent recorded rounds when for all honest parties P and
rounds r, the recorded rounds in CCCP

r are non-decreasing and not in the future.
Additionally, honestly produced blocks6 record the round during which they were
produced.

5In longest chain protocols, the output is the longest observed chain without the
last k blocks. In Streamlet, the output is the longest chain ending in the second of
three consecutive notarized blocks with consecutive epoch numbers.

6Abstractly, an honestly produced block is a block that was first sent to the network
during a broadcast by an honest party. Concretely, in proof-of-work and proof-of-stake,
these correspond to honestly mined and honestly proposed blocks respectively. Genesis
is considered honestly produced.



8

Definition 17 (Freshness). A temporal blockchain protocol execution is fresh(w)
when for any round r, the recorded round r∗ of the tip of any honest party’s chain
output satisfies r − r∗ ≤ w.

The notion of freshness tells us that the recorded round of any confirmed
chain tip cannot be more than w rounds old. Freshness is a chain protocol
property. On the other hand, timeliness is a distributed ledger protocol property,
which tells us that newly appearing transactions do not have recorded rounds
more than v rounds old. When a ledger protocol is constructed using a chain,
these two notions are related through the following theorem.

Theorem 1 (Freshness to Timeliness). An execution of a temporal ledger
protocol based on temporal blockchain protocol whose execution is safe, fresh(w)
and has consistent recorded rounds is timely with timeliness v = w.

Proof. Requirements (1) and (2) of timeliness are directly satisfied from the
consistent recorded rounds. We now prove (3).

Consider any honest party P , and any rounds r1 ≤ r2. Suppose, towards
a contradiction, that LLLP

r2 [|LLL
P
r1 |:] contains a transaction tx with recorded round

r ≤ r1 − v. Due to chain safety, it holds that CCCP
r1 ≺ CCCP

r2 . Transaction tx is
in some block B ∈ CCCP

r2 [|CCC
P
r1 |:] (see Figure 2). Let B∗ be the tip of CCCP

r1 with
recorded round r∗. Because of freshness, it holds that r1 − r∗ ≤ w. Therefore,
from r ≤ r1 − v it follows that r − r∗ ≤ w − v = 0.

Fig. 2: The chain in the proof of Theorem 1.

This is a contradiction because block B extends a chain that contains B∗,
and hence r > r∗. ⊓⊔

The following chain property, recency, suffices to show freshness7 and is an
intermediate property which will be easier to prove.

Definition 18 (Recency). A blockchain protocol execution is recent(w) when
for any round r and honest party P , CCCP

r contains a block that was produced by
an honest party at most w rounds ago.

Recency directly yields freshness by the following theorem.

Theorem 2 (Recency to Freshness). Temporal Blockchains with consistent
recorded rounds and recency(w) are fresh(w).

7In addition to freshness, recency also suffices to show liveness.



On-Chain Timestamps Are Accurate 9

Proof. Let P be any honest party, r be any round, and r∗ be the recorded round
of the tip CCCP

r [−1]. From recency, there is a block B′ ∈ CCCP
r honestly produced

at round r′ ≥ r − w. Because of consistent recorded rounds, its recorded round
is also r′. It follows that r∗ ≥ r′ ≥ r − w. ⊓⊔

In the next subsections, we express Streamlet, Bitcoin and Ouroboros as
chain-based temporal ledger protocols, and we prove that they are recent, thereby
showing they are timely.

4.2 Streamlet is Timely

We now prove that the Partially Synchronous Streamlet Protocol is timely, in
the partially synchronous setting, after GST. We work in the same model as the
Streamlet paper [7], in particular assuming a PKI.

First, we turn Streamlet into a temporal blockchain protocol. Recall Stream-
let proceeds in epochs of duration 2∆ rounds. Temporal Streamlet is the Stream-
let protocol with the following additions: Honest block producers record the first
round of the current epoch as the block’s recorded round. Blocks with decreas-
ing recorded rounds or recorded rounds in the future are not accepted. Temporal
Streamlet remains safe—in the language of [7], consistent—and live(u) for some
u if t

n < 1
3 . Furthermore, it has consistent recorded rounds.

Honest party P , at the beginning of round r, and before performing any
other action, checks the network and outputs the longest confirmed chain CCCP

r .
Let G(e) be the predicate indicating that epochs e− 3, e− 2, e− 1, e, e+ 1 have
honest leaders (this predicate is used to prove liveness in [7]). Before proving
freshness, we first show the maximum interval between two epochs satisfying
G(e) is bounded.

Definition 19 (Temporal Streamlet Typical Execution). Consider an ex-
ecution of the Temporal Streamlet protocol with duration of E epochs, n total
number of parties and t number of corrupt parties. Let J = {0, E}∪{0 < e < E :

G(e)}. The execution is typical if for all d ≥ 5
κ+lg⌊E

5 ⌋
− lg

(
1−(n−t

n )
5
) : maxe∈J(mine′>e

e′∈J

(e′−

e)) ≤ d.

Lemma 2 (Temporal Streamlet Typicality). A Temporal Streamlet execu-
tion is typical, except with negligible probability in κ.

Proof. We let K = {0, E} ∪ {e ∈ {5, 10, 15, . . . , 5
⌊
E
5

⌋
} : G(e)}. It holds that

maxe∈J(mine′>e
e′∈J

(e′ − e)) ≤ maxe∈K(min e′>e
e′∈K

(e′ − e)). Therefore:



10

Pr[max
e∈J

(min
e′>e
e′∈J

(e′ − e)) > d] ≤

Pr[max
e∈K

(min
e′>e
e′∈K

(e′ − e)) > d] ≤

⌊
E

5

⌋(
1−

(
n− t

n

)5
) d

5

For the second inequality, we observe that each chunk is a Bernoulli trial
and we apply a union bound. Letting F =

(
1−

(
n−t
n

)5), we obtain
⌊
E
5

⌋
F

d
5 ≤

2−κ ⇒ d
5 lgF ≤ −κ− lg

⌊
E
5

⌋
⇒ d ≥ 5

κ+lg⌊E
5 ⌋

− lgF . ⊓⊔

Theorem 3 (Streamlet Recency). A typical execution of Temporal Streamlet
is recent with parameter w = 2∆(d+ 1)− 1.
Proof. Let r be the current round of the current epoch e. Let e′ = max({ê ≤ e :
G(ê)}∪{0}). From typicality, it holds that e−e′ ≤ d. From the proof of Streamlet
liveness [7, Theorem 6], epoch e′ contains a confirmed honest block produced at
round r′ = 2∆(e′ − 1) + 1. Therefore, e− e′ ≤ d ⇒ r − r′ ≤ 2∆(d+ 1)− 1. ⊓⊔

Corollary 1 (Streamlet Timeliness). A typical execution of Temporal Stream-
let is timely with parameter v = 2∆(d+ 1)− 1.
Proof. From Theorems 3 and 2, the execution is fresh(2∆(d+1)−1). From this,
safety [7, Theorem 3], recorded round consistency, and Theorem 1, timeliness
with v = 2∆(d+ 1)− 1 follows. ⊓⊔

4.3 Longest Chain Protocols are Timely
We now prove that longest chain protocols are timely both in proof-of-work and
proof-of-stake. For concreteness, we work in the Bitcoin Backbone [14] setting
as a representative of proof-of-work and in the Ouroboros [16] setting as a rep-
resentative of proof-of-stake (the proof carries over to others in the Ouroboros
family [4, 8]). For both, we work with abstract chain virtues and show that
any longest chain temporal blockchain protocol with three crucial properties—
Common Prefix, Chain Quality, and Chain Growth [14]—is timely, provided it
has consistent recorded rounds. In this subsection, we are in the static difficul-
ty/stake and synchronous setting with ∆ = 1.
Definition 20 (Longest Chain Protocol). A longest chain protocol with con-
firmation parameter k is a blockchain protocol for which, at the beginning of any
round r, every honest party P adopts8 the longest valid observed unstable chain

8At the beginning of a round r, before observing the network, we say that honest
party P has an unstable chain Ĉ̂ĈCP

r (this chain contains any block honestly generated
by P at the previous round), whereas upon observing the network, the honest party
adopts the longest valid unstable chain C̃̃C̃CP

r .



On-Chain Timestamps Are Accurate 11

C̃̃C̃CP
r . It outputs the confirmed chain CCCP

r = C̃̃C̃CP
r [:−k]. Whenever an honest party

generates a block, it extends its adopted unstable chain. This new chain is broad-
cast and guaranteed to be valid.

For the notation definitions (µ, ℓ, τ, s) in the following lemma, refer to Fig-
ure 3 and the original Bitcoin Backbone paper [13].

µ: Chain Quality parameter (ratio of honest-to-total blocks in a chain).
ℓ: Number of blocks in a chunk for Chain Quality to apply.
τ : Chain Growth parameter (how much the chain grows, in blocks per round).
s: Number of rounds for Chain Growth to apply.

Fig. 3: Overview of Bitcoin Backbone / Ouroboros variables µ, ℓ, τ, s.

Lemma 3 (Longest Chain Recency). Blockchain protocols following the
longest chain rule, with Chain Quality(µ, ℓ) and Chain Growth(τ, s) are recent
with parameter w = max(s, k+ℓ

τ ) + 1.

Proof. Let P be any honest party and r be any round. Let B′ be the most recent
honestly generated block in CCCP

r [−ℓ:] (or let B′ be genesis if |CCCP
r [−ℓ:]| ≤ ℓ). This

block exists by Chain Quality because we are looking at a chain chunk of length
at least ℓ and µℓ ≥ 1 (or B′ is genesis). Let r′ be the round in which B′ was
generated, and P ′ be the party who generated it (or P ′ = P, r′ = 0 if B′ is
genesis). Suppose, towards a contradiction, that

r′ < r − w . (1)

Let C̃̃C̃CP ′

r′ be the chain that P ′ adopts at round r′ (this will be the empty chain
if B′ is genesis). Party P ′ extends C̃̃C̃CP ′

r′ , at round r′, with block B′, creating a
chain of length | C̃̃C̃CP

r′ |+1. This newly generated chain is broadcast to the network
and received by party P at the beginning of round r′+1. Let Ĉ̂ĈCP

r′+2 be the chain
that P has at round r′ +2. We observe that, at round r′ +2, due to the longest
chain rule, party P has a chain of greater or equal length to the one broadcast
by party P ′. Hence, | Ĉ̂ĈCP

r′+2| ≥ | C̃̃C̃CP ′

r′ |+ 1. Therefore

| C̃̃C̃CP
r | − | Ĉ̂ĈCP

r′+2| ≤ | C̃̃C̃CP
r | − | C̃̃C̃CP ′

r′ | − 1 < k + ℓ . (2)

For the second inequality, refer to Figure 4.
On the other hand, by Inequality 1, r − (r′ + 2) ≥ w − 1 ≥ s and we can

apply Chain Growth between rounds r′+2 and r with parameters s, τ to obtain
| C̃̃C̃CP

r | − | Ĉ̂ĈCP
r′+2| ≥ τ(r − (r′ + 2)) ≥ τ(w − 1) ≥ k + ℓ, which is a contradiction

because of Inequality (2). ⊓⊔



12

Fig. 4: Longest chain recency proof. Block B′ is illustrated in the earliest possible
position.

Ouroboros is already a Temporal Blockchain protocol with consistent recorded
rounds. The Bitcoin Backbone protocol can be augmented in a straightforward
manner to include recorded rounds, as done in the real Bitcoin deployment [3].
The augmentation is illustrated in Figure 5. The construction retains Com-
mon Prefix, Chain Quality and Chain Growth. Furthermore, it has consistent
recorded rounds.

The Temporal Bitcoin protocol is the Bitcoin protocol with the following addi-
tions:

1. Blocks include a round number. Genesis has recorded round 0.
2. Honest parties mine blocks with the current round.
3. The recorded rounds of a valid chain are strictly increasing and not in the

future.

Fig. 5: Temporal Bitcoin construction.

Corollary 2 (Bitcoin and Ouroboros Timeliness). A typical execution of
Temporal Bitcoin or Ouroboros is timely with parameter v = max(s, k+ℓ

τ ) + 1.

Proof. Safety follows from Chain safety, which follows from Common Prefix [14,
Theorem 15] [16, Theorem 4.31]. From Chain Quality(µ, ℓ) [14, Theorem 16] [16,
Lemma 4.19], Chain Growth(τ, s) [14, Theorem 12] [16, Lemma 4.22], and Theo-
rem 3, the execution is recent(max(s, k+ℓ

τ )+1). From recorded round consistency
and Theorem 2, it is fresh(max(s, k+ℓ

τ ) + 1). From this, safety, recorded round
consistency and Theorem 1, timeliness(max(s, k+ℓ

τ ) + 1) follows. ⊓⊔

5 Impossibility

We saw that in the synchronous setting and in the partially synchronous setting
after GST, protocols can be timely. Conversely, in the following theorem, we show
that timeliness before GST in partially synchronous networks is unachievable.

Theorem 4 (Timeliness is Impossible in Partial Synchrony). In partial
synchrony, a safe and live(u) distributed temporal ledger protocol cannot be timely
before GST.



On-Chain Timestamps Are Accurate 13

Proof. Suppose, towards a contradiction, there is a safe, live(u), and timely(v)
distributed temporal ledger protocol with n parties. Consider the following two
worlds:
World A. There are n−1 honest parties and one adversarial party. The adversary
remains silent and does not disrupt the synchrony of the network (GST = 0).
The adversary chooses any round r and introduces a high entropy transaction tx
to the honest parties. We are in synchrony, hence, because of liveness, tx appears
in the ledgers of all honest parties by round r + u. The transaction is recorded
with round r∗ ≤ r + u because of timeliness.
World B. All parties are honest. We are under partial synchrony, and the ad-
versary partitions the network such that one honest party P is isolated from
the other n− 1 honest parties. The adversary sets GST to r + u+ v + 1. Before
GST, at round r, the transaction tx is introduced to the n− 1 connected honest
parties. In the view of these parties, World A and World B are identical up to
now. Hence, like in World A, they report tx in their ledgers by round r+u, with
recorded round r∗ ≤ r + u.

At r2 ≥ GST, due to liveness, tx will be included in P ’s ledger for the first
time, with recorded round r∗ due to safety. Hence, (r∗, tx) ∈ LLLP

r2 [|LLL
P
GST−1|:].

From timeliness, we get r∗ > GST − v − 1. Therefore, r∗ > r + u. This is a
contradiction, since r∗ ≤ r + u. ⊓⊔

6 Timeliness to Supersafety and Back

6.1 Timeliness → Supersafety

We now construct a supersafe protocol Π∗ using a black-box reduction from a
safe, live(u) and timely(v) protocol Π. Each honest party P , executing the Π∗

protocol, runs a full node of protocol Π. The ledger of party P for protocol Π
and Π∗ is denoted as LLLP

r and ∗LLLP
r respectively. The main idea is that ledger

∗LLLr is constructed by filtering through ledger LLLr, and only keeping transactions
with recorded round less than or equal to r − v. The reduction is illustrated in
Figure 6 and Algorithm 1.

  , … ,         , … ,

Fig. 6: The reduction from Timeliness (the Π protocol) to Supersafety (the Π∗

protocol). A transaction is illustrated as a black circle and its recorded round is
displayed below.

When the read function is invoked, the temporal ledger of party P is ac-
quired in Line 6. Then, transactions with recorded round less than or equal to



14

now() − v are filtered to create ∗LLL, which is returned in Line 7. This introduces
a confirmation delay of v additional rounds (see Theorem 5). When the write
function is invoked with transaction tx, party P ∗ simply writes tx to party P in
Line 10.

Algorithm 1 The reduction from Timeliness (the Π protocol) to Supersafety
(the Π∗ protocol).
1: P ← new Π()
2: function execute()
3: P.execute()
4: end function
5: function read()
6: LLL ← P.read()
7: return [(r, tx) ∈ LLL : r ≤ now()− v]
8: end function
9: function write(tx)

10: P.write(tx)
11: end function

Before proving protocol Π∗ is supersafe, we present the following lemma9,
which allows us to argue that all parties in protocol Π share a common view of
sufficiently old transactions.

Lemma 4 (Past Perfect). Consider a safe, live(u), and timely(v) temporal
ledger protocol execution with duration R rounds. If for some honest party P1

and some round r1 it holds that (r∗, tx) ∈ LLLP1
r1 , then for all honest parties P2

and for all rounds r2 ≥ r∗ + v it holds that (r∗, tx) ∈ LLLP2
r2 , as long as at least

one new honest transaction tx′ appears in the network at any round r3, where
r1 < r3 ≤ R− u.

Proof. Consider an execution as in the statement and suppose, towards a contra-
diction, that (r∗, tx) = LLLP1

r1 [i] for some i ∈ N, but (r∗, tx) ̸∈ LLLP2
r2 with r2 ≥ r∗+v.

From safety, LLLP2
r2 ≺ LLLP1

r1 and |LLLP2
r2 | ≤ i < |LLLP1

r1 |. Due to liveness, (r′, tx′) =

LLLP2
r3+u[i

′], for some r′, i′ ∈ N. As tx′ is new, it is not in LLLP1
r1 . Due to safety,

i′ ≥ |LLLP1
r1 | > i, and LLLP2

r3+u[i] = (r∗, tx). Therefore, (r∗, tx) ∈ LLLP2
r3+u[|LLLP2

r2 |:]. From
liveness, it must hold that r2 < r3 + u. Since r∗ ≤ r2 − v, this contradicts the
timeliness with parameter v. ⊓⊔

Theorem 5 (Timeliness to Supersafety). An execution of Π∗, with duration
R rounds, is supersafe and live(u+ v), if the execution of Π is safe, live(u) and
timely(v) as long as at least one new honest transaction appears in the network
at each round before R− u.

9A variant of this auxiliary lemma was introduced and proven in earlier work [2].



On-Chain Timestamps Are Accurate 15

Proof. Consider any honest parties P1, P2, any round r, and any (r∗, tx) ∈ LLLP1
r ,

where r∗ ≤ r − v. From Lemma 4 it holds that (r∗, tx) ∈ LLLP2
r . From this and

from safety, it follows that ∗LLLP1
r = [(r∗, tx) ∈ LLLP1

r : r∗ ≤ r−v] ≼ [(r∗, tx) ∈ LLLP2
r :

r∗ ≤ r − v] = ∗LLLP2
r . Inversely, ∗LLLP2

r ≼ ∗LLLP1
r . Therefore, ∗LLLP1

r = ∗LLLP2
r . Lastly,

stickiness follows from the stickiness of Π. Therefore, Π∗ is supersafe. Liveness
follows from the liveness of Π with an added confirmation delay of v rounds.

⊓⊔

Note that a new transaction in every round is required for the purpose of the
reduction and is not required for building a supersafe protocol in practice. We
note that the above theorem also applies to late-joining clients.

6.2 Supersafety → Perfect Timeliness

We now construct a perfectly timely protocol Π∗ using a black-box reduction
from a supersafe, and live(u) protocol Π. Each honest party P , executing the Π∗

protocol, runs a full node of protocol Π. The main idea is that, even though Π
is not a temporal ledger protocol, since it is supersafe, we can simply ascribe to
each new transaction the round at which it first appeared on our ledger without
loss of safety. This reduction is illustrated in Figure 7 and Algorithm 2.

Algorithm 2 The reduction from Supersafety (the Π protocol) to Perfect
Timeliness (the Π∗ protocol).
1: P ← new Π()
2: ∗LLL ← [ ]
3: function execute()
4: P.execute()
5: LLL ← P.read()
6: for tx ∈ LLL[| ∗LLL|:] do
7: ∗LLL ← ∗LLL ∥ (now(), tx)
8: end for
9: end function

10: function read()
11: return ∗LLL
12: end function
13: function write(tx)
14: P.write(tx)
15: end function

Theorem 6 (Supersafety to Perfect Timeliness). An execution of Π∗ is
perfectly timely, supersafe, and live(u), if the execution of Π is supersafe and
live(u).

Proof. Timeliness requirements (1) and (2) are directly satisfied. For (3) consider
any honest party P and any rounds r1 ≤ r2. Only transactions with recorded



16

  , … ,

   ,    , … ,     ,

  , … ,

Fig. 7: The reduction from Supersafety (the Π protocol) to Perfect Timeliness
(the Π∗ protocol). New transactions of LLLr are included in ∗LLLr with recorded
round r.

round greater than r1 appear in ledger ∗LLLP
r2 [|

∗LLLP
r1 |:]. Hence, Π∗ is timely with

parameter v = 0. Supersafety and liveness(u) follow from those of Π. ⊓⊔

In the full version of the paper [23] we show how this protocol can support
clients.

7 Conclusion

We introduced two new properties of ledger protocols: Timeliness and super-
safety. Timeliness mandates that transactions are recorded on ledgers with a
timestamp that roughly corresponds to the current real time. Supersafety man-
dates that all parties report ledgers that are identical to each other at every
moment. We proved that all popular blockchain deployments attain timeliness
under the assumption that clocks are synchronized, and the network is syn-
chronous. We also showed that the synchrony assumption is a necessary condi-
tion. We reduced supersafety to timeliness and vice versa. Our final protocol is
live, supersafe, perfectly timely, and has support for late-joining clients. Apply-
ing both our reductions in series to any blockchain protocol with safety, liveness,
timeliness and client support allows transforming it into a protocol that addition-
ally enjoys supersafety and perfect timeliness. We hope that the nomenclature
developed in this paper will shed some light on the constituent parts of security
proofs of previous protocols and simplify the design of future ones.

References

1. H. K. Alper. Network time with a consensus on clock. Cryptology ePrint Archive,
2019.

2. Anonymized Authors. ROLLERBLADE: Replicated Distributed Protocol Emula-
tion on Top of Ledgers. Unpublished Manuscript, Aug. 2023.

3. A. M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Cryptocurrencies.
O’Reilly Media, 2014.

4. C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas. Ouroboros Genesis:
Composable proof-of-stake blockchains with dynamic availability. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 913–930, 2018.



On-Chain Timestamps Are Accurate 17

5. C. Badertscher, P. Gazi, A. Kiayias, A. Russell, and V. Zikas. Ouroboros
Chronos: Permissionless Clock Synchronization via Proof-of-Stake. Cryptology
ePrint Archive, 2019.

6. R. Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In Proceedings 42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE, 2001.

7. B. Y. Chan and E. Shi. Streamlet: Textbook Streamlined Blockchains. In Proceed-
ings of the 2nd ACM Conference on Advances in Financial Technologies, pages
1–11, 2020.

8. B. David, P. Gaži, A. Kiayias, and A. Russell. Ouroboros Praos: An adaptively-
secure, semi-synchronous proof-of-stake blockchain. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 66–98.
Springer, 2018.

9. B. David, B. Magri, C. Matt, J. B. Nielsen, and D. Tschudi. GearBox: Optimal-
size Shard Committees by Leveraging the Safety-Liveness Dichotomy. In H. Yin,
A. Stavrou, C. Cremers, and E. Shi, editors, Proceedings of the 2022 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2022, Los Angeles,
CA, USA, November 7-11, 2022, pages 683–696. ACM, 2022.

10. E. Dimitrova. 0x: ZRXWrappedToken. Available at: https://github.com/
0xProject/protocol/blob/b19e29e03d8a6bf5d797af18c3ce227594994f55/
contracts/governance/src/ZRXWrappedToken.sol#L130, Mar 2023.

11. D. Dolev and H. R. Strong. Authenticated Algorithms for Byzantine Agreement.
SIAM Journal on Computing, 12(4):656–666, 1983.

12. C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the Presence of Partial
Synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

13. J. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol: Analysis
and Applications (revised 2019). Cryptology ePrint Archive, Report 2014/765,
2014. https://eprint.iacr.org/2014/765.

14. J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol: Anal-
ysis and Applications. In E. Oswald and M. Fischlin, editors, Annual International
Conference on the Theory and Applications of Cryptographic Techniques, volume
9057 of LNCS, pages 281–310. Springer, Apr 2015.

15. J. A. Garay, A. Kiayias, and N. Leonardos. The Bitcoin Backbone Protocol with
Chains of Variable Difficulty. In J. Katz and H. Shacham, editors, Annual Inter-
national Cryptology Conference, volume 10401 of LNCS, pages 291–323. Springer,
Aug 2017.

16. A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A Provably Se-
cure Proof-of-Stake Blockchain Protocol. In J. Katz and H. Shacham, editors,
Annual International Cryptology Conference, volume 10401 of LNCS, pages 357–
388. Springer, Springer, Aug 2017.

17. L. Lamport and P. M. Melliar-Smith. Synchronizing Clocks in the Presence of
Faults. Journal of the ACM (JACM), 32(1):52–78, 1985.

18. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008.
19. S. Nakamoto. Bitcoin source code: chain.h. Available at: https://github.com/

bitcoin/bitcoin/blob/8247a8db6963d2116dc4697a3217d736c197f91d/src/
chain.h#L24, 2009.

20. E. Nusret Tas, D. Tse, F. Yu, and S. Kannan. Babylon: Reusing Bitcoin Mining
to Enhance Proof-of-Stake Security. arXiv e-prints, pages arXiv–2201, 2022.

21. R. Pass and E. Shi. Rethinking Large-Scale Consensus. In 2017 IEEE 30th Com-
puter Security Foundations Symposium (CSF), pages 115–129. IEEE, 2017.

 https://github.com/0xProject/protocol/blob/b19e29e03d8a6bf5d797af18c3ce227594994f55/contracts/governance/src/ZRXWrappedToken.sol#L130 
 https://github.com/0xProject/protocol/blob/b19e29e03d8a6bf5d797af18c3ce227594994f55/contracts/governance/src/ZRXWrappedToken.sol#L130 
 https://github.com/0xProject/protocol/blob/b19e29e03d8a6bf5d797af18c3ce227594994f55/contracts/governance/src/ZRXWrappedToken.sol#L130 
https://eprint.iacr.org/2014/765
https://github.com/bitcoin/bitcoin/blob/8247a8db6963d2116dc4697a3217d736c197f91d/src/chain.h#L24
https://github.com/bitcoin/bitcoin/blob/8247a8db6963d2116dc4697a3217d736c197f91d/src/chain.h#L24
https://github.com/bitcoin/bitcoin/blob/8247a8db6963d2116dc4697a3217d736c197f91d/src/chain.h#L24


18

22. P. Szalachowski. (Short Paper) Towards More Reliable Bitcoin Timestamps. In
2018 crypto valley conference on blockchain technology (CVCBT), pages 101–104.
IEEE, 2018.

23. A. Tzinas, S. Sridhar, and D. Zindros. On-Chain Timestamps Are Accurate. Cryp-
tology ePrint Archive, 2023.

24. J. Wilcke. Geth source code: blockchain.go. Available at: https://github.com/
ethereum/go-ethereum/blob/5b9cbe30f8ca2487c8991e50e9c939d5e6ec3cc2/
core/blockchain.go#L1557, 2015.

https://github.com/ethereum/go-ethereum/blob/5b9cbe30f8ca2487c8991e50e9c939d5e6ec3cc2/core/blockchain.go#L1557
https://github.com/ethereum/go-ethereum/blob/5b9cbe30f8ca2487c8991e50e9c939d5e6ec3cc2/core/blockchain.go#L1557
https://github.com/ethereum/go-ethereum/blob/5b9cbe30f8ca2487c8991e50e9c939d5e6ec3cc2/core/blockchain.go#L1557

	On-Chain Timestamps Are Accurate
	References


