
MUSEN: Aggregatable Key-Evolving Verifiable
Random Functions and Applications

Abstract. A Verifiable Random Function (VRF) can be evaluated on
an input by a prover who holds a secret key, generating a pseudorandom
output and a proof of output validity that can be verified using the corre-
sponding public key. VRFs are a central building block of committee elec-
tion mechanisms that sample parties to execute tasks in cryptographic
protocols, e.g., generating blocks in a Proof-of-Stake (PoS) blockchain
or executing a round of MPC protocols. We propose the notion, and a
matching construction, of an Aggregatable Key-Evolving VRF (A-KE-
VRF) with the following extra properties: 1. Aggregation: combining
proofs for several VRF evaluations of different inputs under different se-
cret keys into a single constant size proof; 2. Key-Evolving: preventing
adversaries who corrupt a party (learning their secret key) from “forg-
ing” proofs of past VRF evaluations. As an immediate application, we
improve on the block size of PoS blockchains and on the efficiency of
Proofs of Proof-of-Stake (PoPoS). Furthermore, the A-KE-VRF notion
allows us to construct Encryption to the Future (EtF) and Authentica-
tion from the Past (AfP) schemes with a Key-Evolving property, which
provides forward security. An EtF scheme allows for sending a message
to a party who is randomly selected to execute a role in the future, while
an AfP scheme allows for this party to authenticate their messages as
coming from a past execution of this role. These primitives are essential
for realizing the YOSO MPC Framework (CRYPTO’21).

1 Introduction

The capability of publicly showing that one has generated a pseudorandom value
has found numerous applications in cryptography. Verifiable Random Functions
(VRF), the very cryptographic primitive that captures this capability, as pro-
posed by Micali et al. [29], have been used in the setting of Proof-of-Stake (PoS)
protocols [13, 24, 16]. Briefly, the randomness generated by the VRF primitive
is employed to select leaders in the crucial leader election procedure which is
ubiquitous in the PoS based systems. Likewise, it can used in the selection of
a subset of participants (i.e., a committee) to execute cryptographic protocols
(e.g., Multi-party computation (MPC) protocols in the YOSO model [21]).

The notion of Key-Evolving (KE) signatures was first formalized by Bellare
and Miner [4]. The KE property addresses the threat that signatures generated
a long time ago under a particular signing key can be forged at some point in the
future if the signer is corrupted or leaks their signing key. A KE signature scheme
assigns a specific signing key to each time slot and allows the signer to “evolve”
the signing key for the current slot in order to obtain the signing key for the

next slot, while keeping the public key static. Relying on secure erasures, such a
scheme achieves forward security, since the signer can periodically evolve their
signing key and erase the previous version (usually before outputting a signed
message). Hence, in the event of a corruption and leakage of the secret key, the
adversary can only forge messages from that point on. Surprisingly, even though
VRFs are similar to digital signatures, they do not have a KE counterpart.

Another issue in many applications of VRFs is that very often protocols re-
quire multiple instances of VRFs to be constantly evaluated under different secret
keys, thereby issuing multiple VRF proofs and ouput values. Thus, a convenient
capability along with KE is aggregation. Namely, the ability to combine proofs
for several VRF evaluations of different inputs under different secret keys into a
single constant-sized proof that can be used to verify the outputs of all evalua-
tions. While Key-Evolving Aggregate Signatures were proposed before [26, 25],
no VRFs with equivalent properties exist.

VRFs for PoS and Proofs of PoS systems. Forward security is particularly inter-
esting for PoS protocols for two main reasons: (1) these are protocols executed
continuously for long periods of time; (2) during their execution, parties can be-
come corrupted or simply stop taking security measures to protect signing keys.
The biggest issue comes from adaptive adversaries who may instantly corrupt
a party as soon as they publish a block and use their signing keys to generate
alternative versions of the block. Moreover, there are more subtle issues such
as that of nothing at stake attacks. Imagine a party who no longer has stake in
a currently running protocol and thus has no incentive to spend resources to
properly secure or to erase their old signing key. Such a party can inadvertently
leak their signing key or even sell it for a profit. Current PoS blockchain pro-
tocols [13, 24, 16] employ KE signature schemes and secure erasures to achieve
forward security and prevent such attacks.

Furthermore, it is well known that the size of the block is crucial not only in
PoS, but also Proof-of-Work (PoW) systems. Any extra space available in blocks
is welcome [14, 27]. The ability to aggregate values inside the block opens an
opportunity to lower both the size of a single block and the storage requirements
for multiple blocks, a natural application for blockchains.

Encryption to the future. The recent You Only Speak Once (YOSO) MPC [21]
framework work addresses the issues of adaptive security and scalability in Multi-
party Computation (MPC) protocols by using different anonymous committees
chosen uniformly at random to execute each round of the protocol. The idea
is that smaller committees can execute each round of the protocol instead of
requiring all parties to execute all rounds. In order to prevent an adaptive ad-
versary from immediately corrupting a a large enough fraction of a committee
and breaking security, the parties in each committee remain anonymous until
they act. The YOSO MPC framework assumes ideal secure channels that allow
for sending messages to anonymous parties chosen uniformly at random. In order
to concretely realize this model, an Encryption to the Future (EtF) primitive

2

that allows for sending messages to anonymous parties chosen at random was
introduced in another recent work by Campanelli et al. [8].

The Encryption to the Future (EtF) notion and constructions introduced in
[8] and further extended in [11] require all ciphertexts to be posted on a PoS
blockchain ledger. This is necessary both for sending the ciphertext towards
its anonymous receiver(s), for establishing a notion of time and for random
anonymous receiver selection using the PoS blockchain’s intrinsic leader election
mechanism. However, this introduces a grave issue pertaining to forward security:
if a party is corrupted at some point in the future, the adversary can readily
access and decrypt all ciphertexts for which this party was elected as receiver in
the past (plus all of those in the future). This issue also extends to the notion
of Authentication from the Past (AfP) introduced in [8], which allows a party
selected to perform a certain role to sign messages on behalf of this role. Thus,
an adversary who corrupts a party is able to sign messages on behalf of roles for
which this party has been selected in the past.

1.1 Our Contributions

Our central contribution is the UC notion of A-KE-VRF along with a matching
construction based on BLS signatures [6]. Our construction allows for both ag-
gregation of VRF proofs and for a key evolving property that results in forward
security. Moreover, our construction can be endowed with a output extension
feature similar to that of [3], where a single VRF evaluation on a given input
yields several independent pseudorandom outputs. This construction lends itself
to several applications, such as improving the efficiency of PoS blockchains and
adding forward security to Encryption to the Future and Authentication from
the Past. Now we further detail features of the novel notion and construction.

Pros and Cons of game vs simulation based definitions: When defining
our notion of A-KE-VRF, we must provide a definition that can be readily
integrated with protocols that use this sort of primitive while capturing all the
properties we want. Definitions of VRFs with a unbiasability property were
provided in [16, 3]. Game based definitions of forward secure VRFs have been
proposed in [17], although they have weaker unbiasability guarantees than the
aforementioned simulation based definitions. Game based definitions make each
individual property very clear and may be easier for people not familiar with
UC to understand. However, we need a lot of different properties, so we end
up with many different security games, making the presentation of definitions
and the security analysis cumbersome. Moreover, we lose the ability of analysing
security under composability. A simulation based definition can be captured in a
single ideal functionality and gives us the chance to prove composability. Hence,
we opt for a UC ideal functionality and show in Appendix B that it implies the
game based properties of [17]. However, proving universal composability for our
candidate construction requires carefully dealing with the random oracle.

3

Aggregation with signatures: We observe that an A-KE-VRF is a key evolv-
ing signature (KES) scheme with EUF-CMA security. When used as a signature,
only the proof must be provided and the output can be discarded allowing for
succinct aggregation of signatures into aggregated VRF proofs. This observation
allows for the substitution of the KES, which has typically larger keys and sig-
natures. The aggregation and signature properties, if combined, allow for using
an A-KE-VRF both as a VRF and as a KE signature scheme when producing
blocks in a blockchain system (more on that later regarding PoS applications).

Providing multiple outputs per evaluation: When instantiating a PoS
blockchain via the Ouroboros Praos approach, we need to perform two indepen-
dent VRF evaluations: one for leader election and another for implementing a
bounded bias random beacon. It is important to have independent evaluations
because otherwise there would be too much bias on the random beacon output,
which in turn would affect future leader elections. These independent evalua-
tions are obtained by evaluating the same VRF under the same keys on inputs
appended with different suffixes to partition the VRF domain (e.g., given epoch
randomness r evaluate the VRF on input r|LEADER to get the leader election out-
put and then on input r|BEACON to get the beacon protocol message). However,
this results in two separate proofs, which we would have to aggregate. A dif-
ferent approach is proposed in [3], where one VRF evaluation is used to derive
many independent outputs via randomness extraction using a random oracle.
While this approach can be generically applied to our results, our construction
can directly derive multiple outputs from one VRF proof (i.e., a BLS signature),
by defining each output as yi = Hi(σ) where Hi(·) is a different instance of the
random oracle and σ is a VRF proof.

Applications to Proof of Stake (PoS). We concretely show how A-KE-
VRFs can be used to obtain a smaller version of block headers in PoS protocols
such as [13, 24, 16], which employ VRF-based secret leader election to select
the parties who produce each block. In a nutshell, we describe two versions of
the block header using A-KE-VRF properties to reduce storage requirements:
(1) has two VRF proofs, and does not rely on KES primitive (it relies on the
VRF signature-like property cited earlier), (2) relies on the aggregation of both
proofs into a single one. It should be noted that in case of (2), the adversary may
impose a larger bias in the leader selection, therefore a more conservative set of
parameters should be devised for a safe protocol. This parameter estimation is
out of the scope of this work.

Applications to Proof of PoS. Our A-KE-VRF can also be used to improve
the concrete complexity of the Proof of PoS scheme by Agrawal et al. [2]. Here we
use the aggregation in order to provide smaller representations of the blockchain
state that must be shown when providing a Proof of PoS.

4

Applications to Encryption to the Future. We introduce definitions for
both EtF and AfP with forward security, i.e. with the extra guarantee that ad-
versaries who corrupt a party cannot decrypt EtF ciphertexts encrypted towards
roles for which this party was selected in the past nor generate AfP tags on be-
half of such roles. We build on the property of evolving keys of the A-KE-VRFs
we propose to provide matching constructions.

1.2 Related Works

VRFs were first introduced in [29] and UC notions of this primitive have been
proposed in [16] and in [3]. A primitive akin to a VRF but tailor-made for the
Algorand blockchain protocol with key evolution/forward security was proposed
in [17], which does not consider aggregation of VRF proofs or general definitions
of VRFs. Key Evolving signatures (which yield forward security) were intro-
duced in [4] and subsequently improved in [1, 23, 7]. Sequentially aggregatable
and forward secure signatures were introduced in [26, 25], which does not con-
sider general aggregation or VRF properties. An aggregated lottery scheme suit-
able for Proof-of-Stake blockchain protocols was proposed in [18]. This scheme
is also analysed in the UC framework but is constructed from aggregatable com-
mitments, allowing for an even more compact representation of the aggregated
lottery results than what we can achieve by aggregating VRF proofs while keep-
ing VRF outputs on the block. However, it does not offer forward security, which
is paramount for our applications to Encryption to the Future and also allows
for further improvements in the Proof-of-Stake application. While notions of
forward secure (aggregatable) signatures and forward secure VRF-like primi-
tives have been proposed in current literature, none of these primitives allow for
obtaining both aggregation and forward security while achieving the pseudoran-
domness and unbiasability properties required from modern VRFs.

Independent work: A similar notion and constructions of key-homomorphic ag-
gregate VRF are independently introduced in [28], which also suggests an appli-
cation to reducing storage in Proof-of-Stake blockchains. However, their notion
and constructions are not proven secure under arbitrary composition and do not
encompass forward security. We remark that our construction is computationally
more efficient that the construction based on bilinear pairings shown in [28]. On
the other hand, a LWE based construction is also presented in [28].

2 Preliminaries

We denote sampling an element x uniformly at random from a set X as x
$← X ,

and the range of integers a, a+ 1, a+ 2, . . . , b as [a, b].

Assumptions. Our scheme is defined over groups G1,G2,GT with generators
g1 ∈ G1, g2 ∈ G2, gT ∈ GT and a bilinear map e : G1 × G2 → GT which is
non-degenerate. Our A-KE-VRF scheme is secure in the random oracle model

5

given that the BLS signature scheme [6] is existentially unforgeable under cho-
sen message attacks (i.e. EUF-CMA secure). Since the EUF-CMA security of
BLS holds under the Gap-Diffie-Hellman (GDH) problem on bilinear pairings as
defined in [6], our scheme’s security also reduces to GDH.
Verifiable Random Functions. We will use A-KE-VRF to build forward se-
cure Encryption to the Future (EtF) and Authentication from the Past (AfP)
schemes following the approach of [8]. These EtF and AfP schemes will require
a concrete representation of the VRF algorithms with game-based security def-
initions. Hence, in Appendix B we present standard game-based definitions for
VRFs and show that our UC security notion implies these definitions.
Encryption to the Future (EtF)/Authentication from the Past (AfP).
EtF allows for encrypting messages towards an anonymous party randomly se-
lected to play a role at some point in the future. AfP allows for this party to
sign a message on behalf of this role. We recall in verbatim form the definitions
of EtF and AfP from [8] in Appendices D and E.
The UC Security Framework. We prove our A-KE-VRF scheme secure in
the Universal Composability framework of [9], which allows for reasoning about
security under arbitrary composition. This is paramount when using the A-KE-
VRF as part of other protocol (e.g. in our applications to PoS blockchains). We
briefly recall the UC framework and the random oracle functionality FRO in
Appendix A and refer interested readers to [9] for further details.

3 Aggregatable Key-Evolving VRF

We present an ideal functionality for A-KE-VRFs and then provide a construc-
tion that UC-realizes this functionality. We show in Appendix B that this UC
notion of A-KE-VRF implies game based definitions such as those of [17].

The first thorough treatment of signatures in the UC model was introduced
in [10]. Subsequently, a line of work ([16, 3]) presented designs of VRF function-
alities also in the UC model. We depart from [3] and now provide some intuition
behind the design of the functionality depicted in Figures 1 and 2 and how we
extend the functionality of [3] with both aggregation and key-evolving features.
– Aggregation. We add an interface that allows for a party who knows evalu-

ations of the VRF on different inputs with different outputs and proofs to
aggregate the proofs into a single constant-size proof. Additionally, we add a
specific aggregate proof verification interface that takes as input the tuples of
verification keys, inputs and outputs, verifying if an aggregate proof is valid
with respect to these tuples;

– Key-Evolving. A key-evolving signature functionality is presented in [16] and
we adopt a similar approach such that an evaluation is associated with a
specific time period kctr where 1 ≤ kctr ≤ T and T is the total number of
key updates. An interesting modelling challenge is to allow for evaluations on
multiple messages between key updates and, at the same time, not letting an
adaptive adversary break forward security by corrupting a party immediately
after one evaluation is done (before key update) to forge a signature for that

6

period. We model this by using a vector of messages m̄ which are evaluated
atomically, leaving the adversary no opportunity to adaptively corrupt before
the counter has been incremented;

– Generic Range Extension. As in [3], we are able to extend the range of the
output of the VRF. If we assume that the output of the VRF evaluation is
(y, π)← VRF.Evalsk(x) where y ∈ Y, we merely apply a constant1 number of
random oracles H1, . . . Hc to the output y ∈ Y such that the extended VRF
output becomes VRF-EXT.Evalsk(x) = (H1(y), . . . ,Hc(y));

– Consistent Verification. A subtle detail in [3] makes the ideal adversary able
to make the verification algorithm output different answers on the same mes-
sage and proof. In short, the functionality does not store the answer if the
verification is rejected, thus, opens the possibility that the ideal adversary
later can make the functionality accept an identical record. To ensure consis-
tency, we adopt an approach similar to [10] and store a “blacklist” of proofs
that have been rejected.

3.1 Construction ΠA-KE-VRF (Figure 3)

Our construction, presented in Figure 3, is inspired by aggregation of BLS signa-
tures [5] with the property of forward security as presented in [26, 25]. Roughly,
to use such signatures as VRF outputs, we simply observe that BLS signatures
are unpredictable and unique and the use of random oracles provides the desired
pseudorandom outputs. Note that the construction in Figure 3 is not susceptible
to the “rogue public key attack”. This is because the evaluation includes both
the public key vk and time period j, effectively, making the messages pairwise
distinct. We formally state the security of ΠA-KE-VRF in Theorem 1.

Theorem 1. Protocol ΠA-KE-VRF UC-realizes FA-KE-VRF in the FRO-Hybrid model
assuming honest parties are able to perform secure erasures and that the BLS
signature [6] is EUF-CMA secure (i.e. the Gap-Diffie-Hellman assumption).

Proof. Consider an environment Z with input z ∈ {0, 1}poly(λ) where λ denotes
the security parameter. We will argue that for any such environment2 Z and any
adversary A, running in polynomial time in λ, there exist a simulator S such
that it holds that EXECFA-KE-VRF,S,Z ≈ EXECΠA-KE-VRF,A,Z .

Describing the Simulator. To argue the above indistinguishability, we describe
a simulator S for every real-world adversary A. The simulator S interacts with
the functionality FA-KE-VRF and an internal copy of A, producing towards the
environment a transcript that is indistinguishable from that of the real protocol

1 As in [3], we are motivated by the application where c = 2 and output (yT , yρ) such
that yT corresponds to leader election and yρ supplies randomness for the upcoming
epoch.

2 Since we follow the work of [9], we also consider “appropriate” PPT environments
and protocols. Meaning that an environment is assumed to be both balanced and
identity-bounded and protocols are subroutine-respecting.

7

Functionality FA-KE-VRF (1 of 2)

Functionality FA-KE-VRF interacts with a set of parties P = {P1, . . . , Pn} and an ideal
adversary S. It is parameterized by the total number of key updates T and maintains
initially empty tables M [·, ·, ·] (VRF evaluations), MAgg[·] (aggregated proofs) and
sets Leval ← ∅ (honest VRF evaluations), PK ← ∅ (public key information).
Key Generation. Upon receiving (KeyGen, sid) from P ∈ P.
If (P, ·, ·) ∈ PK, then ignore the request. Otherwise, send (KeyGen, sid, P) to S
and, upon receiving (VerKey, sid, P, vk) from S, check if ∀(·, vk′, ·) ∈ PK : vk ̸=
vk′. If this is the case, then set kctr ← 1 and PK ← PK ∪ {(P, vk, kctr)} and
return (VerKey, sid, vk) to P . Otherwise, ignore the request.

Eval and Prove. Upon receiving (EvalProve, sid, vk, j, m̄) from P , verify that
m̄ ∈ X ℓ, (P, vk, kctr) ∈ PK and kctr ≤ j ≤ T . If not, then ignore the mes-
sage. Otherwise, set kctr = j + 1 and send (EvalProve, sid, vk, j, m̄) to S. Upon
receiving the response (EvalProve, sid, vk, j, m̄, π̄), parse m̄ and π̄ as (m1, . . . ,mℓ)
and (π1, . . . , πℓ), respectively, and do the following for i ∈ {1, . . . , ℓ}:
1. If ∃M [vk′, j′,m′] = (y′, S′, Q′) such that πi ∈ S′ and (vk′, j′,m′) ̸=

(vk, j,mi), then ignore the message.
2. Else if M [vk, j,mi] = ⊥, then sample a random yi ← Y and set the value

M [vk, j,mi]← (yi, {πi}, ∅). Assign Leval ← Leval ∪ {(vk, j,mi, yi)}.
3. Else if M [vk, j,mi] = (yi, S,Q) ̸= ⊥, set M [vk, j,mi]← (yi, S ∪ {πi}, Q).

Finally, collect all ȳ = (y1, . . . , yℓ) and respond with (Evaluated, sid, j, ȳ, π̄).
Malicious Eval. Upon receiving (Eval, sid, vk, j,m) from S, if m /∈ X , proceed as:

1. If ∃(P, vk′, kctr) ∈ PK where vk′ = vk and P is not corrupted: if
M [vk, j,m] = (y, S,Q) s.t. S ̸= ∅, return (Evaluated, sid, y) to S, else, ig-
nore the message.

2. If ∃(P, vk′, kctr) ∈ PK where vk′ = vk and P is corrupted: if M [vk, j,m] = ⊥,
set M [vk, j,m]← (y, ∅, ∅) where y

$← Y and return (Evaluated, sid, y).
Verification. Upon receiving a message (Verify, sid, vk,m, j, y, π) from a party V .
If j /∈ [1, T], set f = 0. Otherwise, let (y′, S,Q)←M [vk, j,m] and proceed:
1. If ∃(·, vk′, ·) ∈ PK where vk′ = vk and y′ = y and π ∈ S, set f ← 1.
2. Else, if ∃(P, vk′, ·) ∈ PK where vk′ = vk with P honest and π /∈ S or y ̸= y′,

set f ← 0 and, if π /∈ S, set Q← Q ∪ {π}.
3. Else, if y = y′ and π ∈ S, set f ← 1. If π ∈ Q: Set f ← 0.
4. Else, send (Verify, sid, vk, j,m, y, π, Leval) to S and upon receiving the re-

sponse (Verified, sid, vk, j,m, y, ϕ), when ϕ = 0 set Q ← Q ∪ {π}; and when
ϕ = 1 set S ← S ∪ {π}; lastly set M [vk, j,m]← (y, S,Q) and f ← ϕ.

Finally, output (Verified, sid, vk, j,m, y, π, f) to V .
Adversarial Leakage. On input (PastEval, sid) from S, return Leval to S.
Aggregate. Upon receiving (Aggregate, sid, (vk1; j1;m1; y1;π1), . . . , (vkℓ; jℓ;mℓ;
yℓ;πℓ)) from any party A, then do the following:
1. Send the message (Aggregate, sid, (vk1; j1;m1; y1;π1), . . . , (vkℓ; jℓ;mℓ; yℓ;πℓ))

to the simulator S and await the response (Aggregated, sid, πAgg).
2. Store the aggregated proof with the corresponding tuples such that

MAgg[(vk1; j1;m1; y1), . . . , (vkℓ; jℓ;mℓ; yℓ)]← ({πAgg}, ∅).
3. Return the message (Aggregated, sid, πAgg).

Fig. 1. Ideal functionality FA-KE-VRF (1 of 2).

8

Functionality FA-KE-VRF (2 of 2)

AggVerification. Upon receiving (AggVerify, sid, (vk1; j1;m1; y1), . . . , (vkℓ; jℓ;mℓ;
yℓ), πAgg) from any party V , check that 1 ≤ ji ≤ T , ∀i ∈ {1, . . . , ℓ}.
If this check fails, set f ← 0 and skip the steps below. Other-
wise, let (SAgg, QAgg) ← MAgg[(vk1; j1;m1; y1), . . . , (vkℓ; jℓ;mℓ; yℓ)] and
(y′

i, Si, Qi)←M [vki, ji,mi], ∀i ∈ {1, . . . , ℓ} and proceed as follows:
1. If πAgg ∈ SAgg and ∃(Pi, vk

′
i, ·) ∈ PK with vki = vk′

i and yi = y′
i, ∀i ∈ {1, . . . , ℓ},

set f ← 1.
2. If ∃i ∈ {1, . . . , ℓ} such that ∃(Pi, vk

′
i, ·) ∈ PK where vki = vk′

i and Pi is hon-
est but yi ̸= y′

i, set MAgg[(vk1; j1;m1; y1), . . . , (vkℓ; jℓ;mℓ; yℓ)] ← (SAgg, QAgg ∪
{πAgg}) and f ← 0.

3. If πAgg ∈ SAgg and yi = y′
i, ∀i ∈ {1, . . . , ℓ}, set f ← 1; if πAgg ∈ QAgg set f ← 0.

4. If ∀i ∈ {1, . . . , ℓ} it holds that (vki; ji;mi; yi) is such that ∃(Pi, vk
′
i, ·) ∈ PK

where vki = vk′
i and Pi is honest, yi = y′

i and πAgg /∈ QAgg ∪ SAgg, then send
(AggVerify, sid, (vk1; j1;m1; y1), . . . , (vkℓ; jℓ;mℓ; yℓ), πAgg, Leval) to S. Upon re-
ceiving the response (AggVerified, sid, (vk1; j1;m1; y1), . . . , (vkℓ; jℓ;mℓ; yℓ), ϕ),
if ϕ = 0 set QAgg ← QAgg ∪ {πAgg}; if ϕ = 1 set SAgg ← SAgg ∪ {πAgg}. Finally
set MAgg[(vk1; j1;m1; y1), . . . , (vkℓ; jℓ;mℓ; yℓ)]← (SAgg, QAgg) and f ← ϕ.

5. Else, set f ← 0 and set QAgg ← QAgg ∪ {πAgg}.
Output (AggVerified, sid, (vk1; j1;m1; y1), . . . , (vkℓ; jℓ;mℓ; yℓ), πAgg, f) to V .

Fig. 2. Ideal functionality FA-KE-VRF (2 of 2).

ΠA-KE-VRF interacting with the adversary. Our approach is similar to that of [3]
where specific events that causes the simulator to abort are identified through
the description of the simulator and a subsequent analysis can then bound the
probability of such an event happening resulting in a simulator that fails with
negligible probability. During the simulation, S emulates towards the internal
copy of the adversary A random oracles represented by functions H0, H1 and
H2. Finally, S has tables Tpk and Tsk storing honest public and private keys,
respectively, and TH0 , TH1 , TH2 , TVRF meant for bookkeeping with respect to
random oracles and mirroring the insides of the functionality.

Upon receiving messages from FA-KE-VRF

– On (KeyGen, sid, Pi): Choose a random sk1 ← Zp and set vk1 = gsk1
2 . Obtain

the key pairs ((sk1, vk1), . . . , (skT , vkT)) in the same way as in the proto-
col but by repeatedly invoking the emulated random oracle H0. Denote the
keys (sk, vk)← ((sk1, . . . , skT), (vk1, . . . , vkT)). If ∃j : Tpk[j] = (·, vk), then
abort. Otherwise, set Tpk[i] ← (Pi, vk) and Tsk ← (Pi, sk). Finally, return
(VerKey, sid, Pi, vk) to FA-KE-VRF.

– On (EvalProve, sid, vk, j, m̄): Get the entry (Pi, vk) of the honest Pi from
Tpk and parse m̄ as (m1, . . . ,mℓ), then run the following four-step loop ∀i ∈
{1, . . . , ℓ}:

9

Protocol ΠA-KE-VRF

ΠA-KE-VRF is parameterized by a security parameter λ, a number of key up-
dates T , message space X , output range Y, and a bilinear map represented by
(p,G1,G2,Gt, e, g1, g2). We use as setup random oracles H0 : Zp → Zp, H1 :
G2 × [1, T]×X → G1 and H2 : G2 × [1, T]×G1 → Y (represented by FRO).
Key Generation. On input (KeyGen, sid), if such a request has already been
received, then ignore the message. Otherwise, P generates a sequence of key

pairs ((sk1, vk1), . . . , (skT , vkT)) by initially sampling sk1
$← Zp and computing

skj+1 ← H0(skj) and setting vkj ← g
skj

2 for j ∈ {1, . . . , T}. It then sets the
counter kctr ← 1, stores sk1 locally as the secret key, securely erases sk2, . . . , skT
and outputs (VerKey, sid, vk) where vk = (vk1, . . . , vkT).

Eval and Prove. On input (EvalProve, sid, vk, m̄, j), P first checks that m̄ ∈ X ℓ

for some ℓ ∈ N and kctr ≤ j ≤ T . P then executes these steps until kctr = j:
(1) Compute skkctr+1 ← H0(skkctr) (2) Securely erase skkctr (3) Set

kctr ← kctr + 1. It then computes hi ← H1(vk|j|mi) and πi ← h
skj

i for
i ∈ {1, . . . , ℓ} and the VRF output is derived by yi = H2(vk|j|πi) ∈ Y. Finally,
P computes skkctr+1 ← H0(skkctr), securely erases skkctr , sets kctr ← kctr + 1
and outputs (Evaluated, sid, j, ȳ, π̄), where ȳ = (y1, . . . , yℓ) and π̄ = (π1, . . . , πℓ).

Verification. On input (Verify, sid, j,m, y, π, vk): Start by parsing vk as
(vk1, . . . , vkT) and evaluate h ← H1(vk|j|m). Then, verify that: (1) 1 ≤ j ≤ T ;
(2) H2(vk|j|π) = y; and (3) e(π, g2) = e(h, vkj). If all checks pass, then set f ← 1.
Otherwise, set f ← 0. Finally, output (Verified, sid, vk, j,m, y, π, f).

Aggregation. Upon receiving (Aggregate, sid, (vk1; j1;m1; y1;π1), . . . , (vkℓ; jℓ;

mℓ; yℓ;πℓ)), output (Aggregated, sid, πAgg) where πAgg =
(∏ℓ

i=1 πi, π1, . . . , πℓ

)
.

Notice that outputs yi can be represented by πi as yi = H2(vki|ji|πi), so πAgg

represents all (πi, yi) pairs.
AggVerification. Upon receiving (AggVerify, sid, (vk1; j1;m1; y

′
1), . . . , (vkℓ; jℓ;mℓ;

y′
ℓ), πAgg), parse vki = vki,1, . . . , vki,n and set f = 1 if and only if:

e(πAgg, g2) =

ℓ∏
i=1

e(H1(vki|ji|mi), vki,ji), H2(vki|ji|πi) = y′
i, ∀ i ∈ {1, . . . , ℓ}

Output (AggVerified, sid, (vk1; j1;m1; y
′
1), . . . , (vkℓ; jℓ;mℓ; y

′
ℓ), πAgg, f).

Fig. 3. Concrete protocol ΠA-KE-VRF.

1. If there exists (vk, j,mi, ·, S) ∈ TVRF with S ̸= ∅, then set πi ← π where3

π ∈ S and break. Otherwise, move to next step.

2. Invoke the emulated random oracle hi ← H1(vk|j|mi) and set πi ← h
skj

i .
3. Check that πi is unique by checking that no other tuple (vk′, j′,m′, ·, S′)

exists in TVRF such that π ∈ S′. If this is not the case, then abort.
4. If (vk, j,mi, ·, ·) ̸∈ TVRF, then insert (vk, j,mi,⊥, {πi}) into TVRF.
Return (EvalProve, sid, vk, j, m̄, π̄) with m̄ = (m1, . . . ,mℓ) and π̄ = (π1, . . . , πℓ).

– On (Verify, sid, vk, j,m, y, π, Leval): First parse vk = (vk1, . . . , vkT), then

3 Even if FA-KE-VRF supports multiple proofs per (vk, j,m)-tuple, the simulator can
safely assume |S| ≤ 1. This is due to the uniqueness of the underlying BLS signatures.

10

1. Invoke the emulated random oracle h← H1(vk|j|m) and π′ ← hskj ;
2. Verify the proof by checking if π = π′ and that e(π, g2) = e(h, vkj). If

the checks goes through set fπ ← 1. Otherwise, set fπ ← 0;
3. If fπ = 0 then return (Verified, sid, vk, j,m, 0) to FA-KE-VRF and break;
4. If (vk, j,m, ·, ·) /∈ TVRF but TH2 [vk, j, π] ̸= ⊥, then abort. If (vk, j,m, ·, ·) ∈

TVRF then invoke the emulated random oracle and y′ ← H2(vk|j|π);
5. If y = y′ then retrieve the record (vk, j,m, y, S) ∈ TVRF and update the

entry (vk, j,m, y, S ∪ {π}) and return (Verified, sid, vk, j,m, 1). Other-
wise, return (Verified, sid, vk, j,m, 0).

– On (Aggregate, sid, (vk1; j1;m1; y1;π1), . . . , (vkℓ; jℓ;mℓ; yℓ;πℓ)): Compute the

aggregated proof πAgg =
∏ℓ

i=1 πi. Return (Aggregated, sid, πAgg).
– On (AggVerify, sid, (vk1; j1;m1; y

′
1), . . . , (vkℓ; jℓ;mℓ; y

′
ℓ), πAgg, Leval): Parse the

key vki = vki,1, . . . , vki,n and set ϕ = 1 if and only if the following holds:

e(πAgg, g2) =

ℓ∏
i=1

e(H1(ji|mi), vki,ji), H2(vki|ji|mi) = y′i,∀ i ∈ {1, . . . , ℓ}.

Return (AggVerified, sid, (vk1; j1;m1; y
′
1), . . . , (vkℓ; jℓ;mℓ; y

′
ℓ), ϕ).

Interacting with Random Oracles
– Emulating H0: On input s ∈ Zp. If TH0 [s] ̸= ⊥ then return TH0 [s]. Otherwise,

sample uniformly random r ∈ Zp and set TH0 [s]← r. Finally, return TH0 [s].
– Emulating H1: On input t ∈ {0, 1}ℓ. If TH1 [t] ̸= ⊥ then return TH1 [t]. Other-

wise, sample a group element r ← G1 uniformly at random and set TH1 [t]←
r. Finally, return TH1 [t].

– Emulating H2: On input u ∈ G1 do the following:
1. If this is an internal invocation from the simulator the list of honest

evaluations Leval is provided by the functionality as an argument in
Verify. Otherwise, the same list can be retrieved by calling PastEval;

2. Identify the set Z of (vk, j,m)-tuples that give rise to the group element
u. More concretely, first define a function key-seq(vk) as

key-seq(vk) = {(skj)j∈{1,...,T} | TH0 [skj−1] = skj ∧ gskj = vkj}.

That is, obtain the vector of keys (sk1, . . . , skT) extracted from TH0 such
that gskj = vkj . Then, given u = h ∧ hskj , identify the set

Zvk = {(vk, j,m) | key-seq(vk) = (sk1, . . . , skT) ∧ TH1 [vk|j|m] = u};

3. If Zvk = ∅:
Check if TH2 [vk|j|u] ̸= ⊥. If so, set y ← TH2 [vk|j|u]. Otherwise, assign y
to a uniformly random element in Y;

4. If Zvk = {(vk, j,m)} ∧ (vk, j,m, ·, ·) ∈ TVRF:
If there is already an entry (vk, j,m, y′, ·) ∈ TVRF then we simply use
y ← y′. Otherwise, the entry is of the form (vk, j,m,⊥, ·) and we can
identify the tuple (m, j, ỹ) ∈ Leval, update (vk, j,m,⊥, ·) to (vk, j,m, ỹ, ·)
and set y ← ỹ;

11

5. If Zvk = {(vk, j,m)} ∧ (vk, j,m, ·, ·) /∈ TVRF:
Send (Eval, sid, vk, j,m) to FA-KE-VRF and receive the (Evaluated, sid, y′).
Set y ← y′ and insert (vk, j,m, y, ∅) into TVRF.

Finally, set TH2 [u]← y and respond with y.

Upon corruption of party Pi. Upon corruption of Pi, the simulator first
identifies all honest evaluations under Pi’s keys:

Ovk =

(vk, j,m, y) :

key-seq(vk) = (sk1, . . . , skT)∧
TH1 [vk|j|m] = h ∧

hskj = u ∧
TH2 [vk|j|u] = y

 .

Then, it requests the list of honest evaluations Leval from the functionality
and check if any entries from the functionality need to be programmed into H2.
That is, for each tuple in Leval with (j,m, y), check that a corresponding tuple
(vk, j,m, y) exists in Ovk. If not, then program the oracle by setting TH2 [vk|j|u] =
y. Otherwise, do nothing. Then, it marks Pi as corrupted in FA-KE-VRF and
provides the adversary the key skj+1 where j represents the maximum of the
j-values found in TVRF (the time period of the most recent evaluation).

Analysis of the simulator. We analyse the simulator in Appendix C.

4 Applications to Succinct Proof-of-Stake Blockchains

We start by reviewing the Ouroboros Praos block design [16]. We show how
A-KE-VRFs can be used to achieve smaller block headers in Ouroboros Praos.
Later, we outline further concrete optimizations that only apply to our construc-
tion ΠA-KE-VRF, i.e., requiring non-black-box modifications. Finally, we discuss
how A-KE-VRFs be used to obtain more efficient Proofs of Proof-of-Stake [20, 2].

A Regular VRF based PoS Block Design. In PoS blockchain protocols such
as Ouroboros Praos [16], VRFs are used for two purposes: 1. Leader Election,
where a VRF output/proof is used to verify that a party is selected to generate
a block; 2. Random Beacon, where a VRF output/proof is used to generate
randomness for leader election in the next epoch. Moreover, a KE signature is
used for block authentication, i.e., ensuring that a block is created by an elected
leader in a way that an adaptive adversary cannot forge a conflicting block after
corrupting the leader. By using the A-KE-VRF it is possible to aggregate the
two VRF proofs. Moreover, it is also possible to substitute the KE signature on
the block with a third VRF proof.

Ouroboros Praos Block Design Review. A block B for a slot number sl containing
data d is produced by a party P by publishing the tuple (st, d, sl, crt, ρ, σ), where
st is the hash of the previous blocks. The tuple crt = (P, y, π) contains the party’s

12

identity P, a VRF output y and a vrf proof π. The pair ρ = (yρ, πρ) contains a
VRF output yρ and a VRF proof πρ. Finally, σ is a KE signature on the value
(st, d, sl, crt, ρ) for the time slot sl, generated with the signing key for a particular
point in time specified by sl. Concretely, in [16], the KE signature scheme [23] is
used, while the VRF is instantiated by a new UC-secure unbiasable construction.
Lastly, the design [16] is introduced in the hybrid world execution. Namely, it is
described with ideal functionalities for the VRF and KE signature instances.

4.1 Succinct Block Headers: Concrete Optimizations

Now we describe optimization techniques to our construction ΠA-KE-VRF by de-
tailing the following four approaches.

1. Generic VRF output extension via [3];
2. Non-black-box output extension for ΠA-KE-VRF;
3. Heuristic construction with higher adversarial bias: deriving VRF outputs

from aggregated proof in ΠA-KE-VRF;
4. Compressing public keys into Merkle Trees.

Generic VRF output extension via [3]. We argue that our construction is com-
patible to the extension technique in [3]. Note that the core idea in [3] is that a
k-tuple of VRF outputs is generated by performing yi ← H(i||y) for 1 ≤ i ≤ k
given an arbitrary proof/value VRF pair (y, π). We observe that our construc-
tion, defined in Section 3 as y ← H2(vk||j||π) and π ← hskj for h← H1(vk||j||m)
and slot j, is suitable to the same derivation technique for (y1, . . . , yk). That is
yi = H3(i||H2(vk||j||π)), given an extra hash function H3. We point out that
in our construction we derive new outputs by relying on a single proof π. This
feature is used to decrease the size of the block as it is described next. The
final block design, as presented in [3], is (st, d, sl, crt, ρ, σ), with crt = (P, y, π),
ρ = (yρ, πρ), and the signature σ generated by the KE signature scheme [23].

Musen: Non-black-box output extension for ΠA-KE-VRF. Although our notion of
A-KE-VRF is compatible with the generic output extension of [3], however our
concrete construction can be modified for more efficient output extension. We
leverage the generation of the VRF output values by a series of hash values
from the original proof π, instead of the original VRF output y. We stress that
this change offers a smaller block, given that it is possible to generate VRF
values y and yρ given the single proof π. Concretely, ΠA-KE-VRF, described in
Figure 3, can be modified to compute independent pseudorandom VRF outputs
yi = H3(vk|i|π) ∈ Y for i ∈ {1, . . . , ℓ} and a random oracle instance H3().
Table 1 highlights the size differences. Our construction requires storing only
the proof π, therefore y and yρ can be derived for validation. Furthermore, our
design uses the VRF construction to compute a signature πσ. Finally, the block
design is (st, d, sl, crt∗, ρ∗, σ∗), such that crt∗ = P, ρ∗ = π, and σ∗ = πσ, which
is a VRF proof used as a signature.

13

Heuristic Musen: Heuristic construction with higher adversarial bias. Our previ-
ous construction contains two VRF proofs, i.e., π and πσ, and the latter is used
as a signature. Given the existing aggregation procedure, it is a natural direction
to explore the possibility of aggregating both proofs into a new proof denoted
πagg, i.e., the aggregated proof of π and πσ, as it would lead to an even smaller
block header. In such a construction, the VRF output values are generated by
computing yi = H3(i|vk|j|πagg) ∈ Y for i ∈ {1, . . . , ℓ} as before. The final block
structure is (st, d, sl, crt∗, ρ∗∗, σ∗), such that crt∗ = P, ρ∗∗ = ·, and σ∗∗ = πagg.
This results in a smaller header, as illustrated in Table 1.

Note that πσ is generated with the new block content as the input for the
VRF. We stress that the data is arbitrarily chosen by a corrupted participant
which can choose multiple versions of the block content in order to pick the most
favorable one among several options of πσ. The adversary’s goal is to generate
a VRF output y that increases the chances of a corrupted party being selected
as the block leader. We remark that although the adversary cannot arbitrarily
choose the value of y (given it is an output of a random oracle), by having
multiple choices to choose from, it introduces a bias in the distribution of the
value which translates in an edge in being chosen as slot leader.

We conjecture that such bias is manageable and could be proven secure,
albeit with more conservative set of parameters which may hinder the overall
protocol efficiency. The study of the new and secure set of parameters is out of
the scope of this work, and left as a suggestion for future work.

Protocol
Types

Block Proofs
Size

(in bits)

Ouroboros Praos [16] (st, d, sl, crt, ρ, σ)
crt = (P, y, π)
ρ = (yρ, πρ)

σ = σ

|P|+926
926
3584

Badertscher et al. [3] (st, d, sl, crt, ρ′, σ)
crt = (P, y, π)

ρ′ = yρ
σ = σ

|P|+926
463
3584

MUSEN
[THIS WORK]

(st, d, sl, crt∗, ρ∗, σ∗)
crt∗ = P
ρ∗ = π
σ∗ = πσ

|P|
463
463

HEURISTIC
MUSEN

[THIS WORK]
(st, d, sl, crt∗, ρ∗∗, σ∗∗)

crt∗ = P
ρ∗∗ = ·

σ∗∗ = πagg

|P|
0

463

Table 1. Note (st, d, sl) is fixed, however the block proofs (crt, ρ, σ) differ. We remark
that the Musen versions of the block header does not contain a single VRF output value
as they can be derived from the single proof π in a non-black-box access to our VRF
construction ΠA-KE-VRF. We assume that: (1) one pairing group element to be 463 bits
as well as the output of hash function, (2) the label P has fixed |P| bits of length, and
(3) KE signature is 448 bytes long according to Cardano Specification [15]. However,
the size of a pairing group element can be as small as 382 bits for the BLS12-381 curve.

14

Compressing public keys. We now focus our attention to the size of the public
key. We recall that in our construction vk is the tuple (vk1, . . . , vkT) for the
time slot 1 ≤ j ≤ T . We now detail a Merkle Tree based optimization to make a
small key version. For completeness, assume the Merkle Tree is three algorithms,
(M.gen,M.prove,M.ver). Given the public key vk, then M.gen(vk)→ Mroot, thus
M.prove outputs the membership proof Mj , that is M.prove(Mroot, vkj) → Mj .
The verification is performed as M.ver(Mroot,Mj , vkj)→ 1. In order to decrease
the size of vk, it is necessary to set vk′ ← Mroot and π′ ← (π,Mj , vkj). Thus, the
VRF proof π′ in (j,m, y, π′, vk′) is verified by computing h ← H1(Mroot|j|m),
and checking the following three equalities: (1) M.ver(Mroot,Mj , vkj) = 1, (2)
y = H2(Mroot|j|π); and (3) e(π, g2) = e(h, vkj).

This technique shortens the public key vk size to only the root of the Merkle
Tree, a significant advantage from the much longer (vk1, . . . , vkT). We increased
the size of the original proof π with two extra values, namely (Mj , vkj). However,
the trade-off between vk and vk′ may be worth the size increase of the proof.

4.2 Better Proofs of Proof-of-Stake

The construction of Proofs of Proof-of-Stake is an important aspect in the Proof-
of-Stake ecosystem to allow efficient sidechains and superlight clients for Proof-
of-Stake protocols [20, 2]. The first construction was presented by Gazi et al. [20]
and built a scheme based on Ad-Hoc Threshold Multisignatures (ATMS), which
can themselves be built based on regular digital signatures, aggregate signatures,
STARKs or bulletproofs - with different tradeoffs among the constructions in
terms of computational/communication complexities and required assumptions.

A key idea is that for every epoch of the Proof-of-Stake protocol there is a
synchronization committee that is responsible for signing the state commitment
of that epoch. Moreover, there is handover information that will determine the
committee members for the next epoch (the specifics of how committee mem-
bers are sampled depends on the particular Proof-of-Stake protocol being used,
please check [20, 2] for details), and the committee members of the current
epoch sign the handover information, thus allowing the committee of one epoch
to inaugurate the committee representing the next epoch. The state commit-
ment/handover messages are accepted as long as there are signatures from the
majority of the committee members for that epoch. And it is assumed that for
every epoch of the Proof-of-Stake protocol there is a honest majority in the com-
mittee, so that this recurrent process of signing handover information and state
commitment can work without security problems.

The recent work of Agrawal et al. [2] make improvements by building a
scheme based on Merkle Trees that achieves sublinear communication and com-
putational complexities based on the assumption that there are some provers
that are always online in the chain and available to help the verifiers, and that
at least one of those provers is honest and will provide the correct information.

The main idea is that each prover presents a succinct representation of the
sequence of committees, denoted a handover tree, by hashing the information of
each epoch’s committee and then inserting the hashes into a Merkle tree whose

15

root is sent to the verifier. In case that no divergence exists in the roots pro-
vided by the provers, one of the provers can be used to get the full information
about the current committee members together with a proof that its hash is the
last element of the handover tree. And this information can be checked by the
verifier in order to guarantee the correctness of the information about the cur-
rent committee members. And from there, the signature of the members of this
committee can be used to verify the state commitment (also represented using
Merkle tree to get an efficient and secure representation). Using our techniques
it is possible to aggregate the individual signatures of committee members on
the state commitment (while keeping tracking of who signed it); and in cases
where a VRF is used to determine the committee membership (i.e. Ouroboros
Praos [16]) signatures and VRF proofs that are needed to verify membership
can be aggregated as described in previous sections.

In case there is any divergence in the Merkle tree roots provided by the
different provers, the verifier will use an elimination tournament and play dis-
agreeing parties against each other in matches until all remaining provers are in
agreement. In each match of this tournament the verifier recursively asks two
disagreeing provers to recursively provide information about the children of the
handover tree until the first point of disagreement is located. This point of this
disagreemnt is then checked: both provers are asked to reveal the committee
members of that epoch and the previous one, as well as the signatures on the
handover information by the committee members from the previous epoch. This
information, together with the handover tree, can then used to eliminate at least
one dishonest prover involved in that match, and no honest prover is ever elim-
inated. Please check Agrawal et al. [2] for details. Also here our techniques can
be used to aggregate the signatures on the handover information, and in cases
where a VRF is used to determine the committee membership to aggregate both
the signatures and VRF proofs that are necessary for the checks.

5 Forward Secure Encryption to the Future

In order to argue about forward security for EtF and AfP, we first recall that
semantic security for EtF (Definitions 10 and 11) and unforgeability for AfP
(Definition 12) as introduced in [8] are defined with respect to a lottery predicate
(Definition 9). The lottery predicate lottery(B, sl,P, skL,i) ∈ {0, 1} lets a party
who has lottery witness skL,i check whether it was the winner for role P in slot sl
according to a blockchain B, i.e. the party selected to play that role at that slot
by the intrinsic leader election mechanism of a PoS blockchain protocol. A sender
can generate an EtF ciphertext ct ← Enc(B, sl,P,m) containing message m
encrypted towards the winner of role P in slot sl according to an initial blockchain
B. A party whose lottery witness skL,i satisfies 1 ← lottery(B̃, sl,P, skL,i) with

respect to a future blockchain B̃ evolved from B4 can use skL,i to decrypt ct and

obtain message m ← Dec(B̃, ct, skL,i). Intuitively, semantic security for an EtF

4 The security model for EtF considers blockchain protocols for which it is possible to
non-interactively check whether a blockchain B̃ has evolved from an initial blockchain

16

ciphertext for role P and slot sl holds against adversaries whose lottery witness
skL,A is such that 0← lottery(B̃, sl,P, skL,A) (i.e. an adversary who did not win

role P at slot P with respect to a valid evolution B̃ of the initial blockchain
B cannot learn anything except the length of m by seeing ct). Analogously,
unforgeability of AfP signatures on behalf of role P at slot sl with respect to
blockchain B̃ holds against adversaries who did not win role P at slot sl of a
blockchain evolution B̃ of B (i.e. the adversary cannot sign on behalf of role
P of slot sl). Notice that both security guarantees hinge on the fact that the
adversary does not know a witness skL,i that satisfies 1← lottery(B̃, sl,P, skL,i)

with respect to a future blockchain B̃ evolved from B for the role P, slot sl and
initial blockchain B used as parameters for the EtF ciphertext.

Defining Forward Security for EtF and AfP. We focus on defining and
constructing a notion of witness evolving lottery predicates that allow parties
to evolve their witness so that obtaining past versions of the witness from its
current versions is computationally hard. We do not modify Definition 9 of a
lottery predicate but rather define an extra witness evolution algorithm to be
used in tandem with the original lottery predicate. Later on, this will be naturally
leveraged to ensure that previous EtF ciphertexts generated for roles for which
a party has been selected cannot be decrypted using the current version of the
witness. Similarly, AfP tags cannot be generated on behalf of roles for which the
party has been selected in the past using current versions of the party’s witness.

Recall that, according to the model of blockchain protocol execution for EtF
and AfP presented in [8] and summarized in Appendix D, each party Pi is repre-
sented by a pair (Sig.ski, skL,i) associated with public data (Sig.pki, auxi, stakei).
In the original formulation of lottery mechanisms from [8] a static witness skL,i

is used by each party throughout the entire execution. Now, we take advantage
of the slot numbers sl already considered in the original model to define a notion
of evolving witness where every slot sl is related to an unpredictable slot-specific
witness skL,i,sl that can be obtained from the previous slot’s witness skL,i,sl−1.
Notice that the sl parameter in the subscript of our generalized lottery scheme
is already taken as input by the lottery predicate lottery(B, sl,P, skL,i) ∈ {0, 1}
and used as a parameter for EtF and AfP algorithms, so it is not necessary to
modify the syntax and security definitions for these component. While we keep
the lottery predicate itself unchanged, we will add a witness update algorithm
skL,i,sl+1 ← Update(skL,i,sl) that takes as input a lottery witness skL,i,sl for slot
sl and outputs a new witness skL,i,sl+1 for slot sl+ 1. While the witness evolves
skL,i,sl, the signature key Sig.ski and the public data (Sig.pki, auxi, stakei) are
static, so no modification to the underlying blockchain protocol is necessary
apart from having parties invoke the witness update algorithm for every slot, so
they obtain their updated witness.

B via an honest execution of the underlying blockchain protocol. See Appendix D
for details.

17

Definition 1 (Witness Evolving Lottery Predicate). A witness evolving
lottery predicate is a pair of PPT functions (lottery,Update) defined as follows:
– lottery(B, sl,P, skL,i) ∈ {0, 1} takes as input a blockchain B, a slot sl, a role

P and a lottery witness skL,i and outputs 1 if and only if the party owning
skL,i won the lottery for the role P in slot sl with respect to the blockchain B.

– skL,i,sl+1 ← Update(skL,i,sl) takes as input a lottery witness skL,i,sl and out-
puts a fresh unpredictable lottery witness skL,i,sl+1 for slot sl+ 1.
Security. An adversary A who is given a blockchain B that is at a slot
sl in the context of a blockchain protocol ΓV as defined in Appendix D.1
and any lottery witness skL,i,sl can only find a lottery witness skL,i,sl′ for a
slot sl′ < sl that satisfies 1 ← lottery(B, sl′,P, skL,i,sl′) for any role P with
probability negligible in κ for a computational security parameter κ.

Forward security for EtF and AfP with Witness Evolving Lottery
Predicate and Secure Erasures. It is straightforward to show that any EtF
or AfP scheme instantiated with a witness evolving lottery predicate achieves
forward security given secure erasures. Indeed, the semantic security defini-
tion for EtF (Definition 11) and the unforgeability definition for AfP (Defi-
nition 12) prevent any adversary who does not know a witness skL,i such that
1← lottery(B, sl,P, skL,i) from breaking these security guarantees. When we in-
stantiate such schemes with a witness evolving lottery predicate, we can use the
skL,i,sl+1 ← Update(skL,i,sl) algorithm to obtain a new lottery witness skL,i,sl+1

for slot sl + 1 from the current witness skL,i,sl and then securely erase skL,i,sl.
Given the security of the witness evolving lottery scheme (Definition 1), it is
infeasible for an adversary who obtains skL,i,sl to learn any witness skL,i,sl′ for
slot sl′ < sl such that 1 ← lottery(B, sl′,P, skL,i,sl′) for any role P except with
negligible probability. On the other hand, an adversary who breaks semantic
security for EtF or unforgeability for AfP with respect to a slot sl′ < sl when
only given access to a lottery witness skL,i,sl must be able to learn a witness
skL,i,sl′ such that 1← lottery(B, sl′,P, skL,i,sl′)

5, which would break the security
of the witness evolving lottery predicate. Hence, any EtF or AfP scheme instan-
tiated with a witness evolving lottery predicate achieves forward security given
secure erasures. A concrete instantiation can be obtained via the constructions
[8] (recalled in Appendix E), which can be instantiated for any lottery predicate.

Construction of Witness Evolving Lottery Predicate Our main con-
struction is a direct application of our notion of A-KE-VRF, leveraging the key
evolving property to construct a witness evolving lottery predicate. The main
idea of this construction is to instantiate the lottery predicate based on oblivious
leader selection via VRFs from Ouroboros Praos [16] (recalled in Appendix E)
using our A-KE-VRF scheme instead of a standard VRF scheme. In this lot-
tery predicate, the lottery witness is the VRF secret key iteself. Hence, since we

5 Formally, this requires witnesses to be extractable given the blockchain B and the
EtF ciphertexts, which is achieved by the cWE construction of near future EtF from
[8] recalled in Appendix E

18

can evolve the VRF secret key, we can directly derive a witness evolving lottery
predicate. Given that our A-KE-VRF has the same properties as the Ouroboros
Praos VRF (plus the key evolution), it fits into this lottery construction in a
straightforward manner. Moreover, since we only require forward security from
the VRF (and not aggregation) to obtain this property, the forward secure VRF
from [17] could also be used to construct this lottery predicate and instantiate
forward secure EtF and AfP following the same approach.

Forward Security for the EtF construction of [8]. If we depart from the
EtF construction of from [8] based on Witness Encryption of Commitments
(cWE) recalled in Appendix E.3, we can also get forward security by erasing the
randomness used for the commitments to witnesses for the cWE scheme. The
key observation is that a party may only decrypt a cWE ciphertext if it knows
both the witness skL,i inside its commitment cmi ← Commit(ck, skL,i; ρi) and the
randomness ρi used to generate cmi. Since this EtF construction from [8] is essen-
tially a direct application of a cWE, where each party publishes commitments
cmi to their witnesses skL,i so that an encryptor can create cWE ciphertexts
containing the desired messages towards each cmi for the relation that checks
whether 1← lottery(B, sl,P, skL,i). Later on, if a party is selected for a given role
at a certain slot with respect to the blockchain state, they can decrypt the cWE
ciphertext using skL,i and ρi. Hence, one can adapt this specific construction
as follows: post commitment cmi ← Commit(ck, skL,i; ρi), retrieve/decrypt EtF
ciphertext from the blockchain and decrypt using skL,i, ρ, securely erase ρi, post
new commitment cmi ← Commit(ck, skL,i; ρ

′
i) using a fresh randomness ρ′i. This

would prevent an adversary from decrypting past ciphertexts upon corruption,
since cWE decryption requires both skL,i and ρi. To obtain forward security
for an AfP scheme associated to this EtF scheme (described in Appendix E.4),
we further modify the AfP construction of [8] to require that the signer proves
knowledge not only of skL,i but also of ρi for the cm used to generate the EtF
ciphertext.

References

1. Michel Abdalla and Leonid Reyzin. A new forward-secure digital signature scheme.
In Tatsuaki Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages
116–129. Springer, Heidelberg, December 2000.

2. Shresth Agrawal, Joachim Neu, Ertem Nusret Tas, and Dionysis Zindros. Proofs
of proof-of-stake with sublinear complexity. Cryptology ePrint Archive, Report
2022/1642, 2022. https://eprint.iacr.org/2022/1642.

3. Christian Badertscher, Peter Gazi, Iñigo Querejeta-Azurmendi, and Alexander
Russell. A composable security treatment of ECVRF and batch verifications. In Vi-
jayalakshmi Atluri, Roberto Di Pietro, Christian Damsgaard Jensen, and Weizhi
Meng, editors, ESORICS 2022, Part III, volume 13556 of LNCS, pages 22–41.
Springer, Heidelberg, September 2022.

4. Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In
Michael J. Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 431–448.
Springer, Heidelberg, August 1999.

19

https://eprint.iacr.org/2022/1642

5. Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. Aggregate and ver-
ifiably encrypted signatures from bilinear maps. In Eli Biham, editor, EURO-
CRYPT 2003, volume 2656 of LNCS, pages 416–432. Springer, Heidelberg, May
2003.

6. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
514–532. Springer, Heidelberg, December 2001.

7. Johannes A. Buchmann, Erik Dahmen, and Andreas Hülsing. XMSS - A practi-
cal forward secure signature scheme based on minimal security assumptions. In
Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th International Workshop,
PQCrypto 2011, pages 117–129. Springer, Heidelberg, November / December 2011.

8. Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders Konring,
and Jesper Buus Nielsen. Encryption to the future - A paradigm for sending secret
messages to future (anonymous) committees. In Shweta Agrawal and Dongdai
Lin, editors, ASIACRYPT 2022, Part III, volume 13793 of LNCS, pages 151–180.
Springer, Heidelberg, December 2022.

9. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

10. Ran Canetti. Universally composable signature, certification, and authentication.
In Proceedings. 17th IEEE Computer Security Foundations Workshop, 2004., pages
219–233. IEEE, 2004.

11. Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. YOLO
YOSO: Fast and simple encryption and secret sharing in the YOSO model. In
Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part I, volume
13791 of LNCS, pages 651–680. Springer, Heidelberg, December 2022.

12. Melissa Chase and Anna Lysyanskaya. On signatures of knowledge. In Cynthia
Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 78–96. Springer, Hei-
delberg, August 2006.

13. Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger.
Theoretical Computer Science, 777:155–183, 2019.

14. Coindesk. Cardano Network Developers Increase Block
Size by 10%. https://www.coindesk.com/tech/2022/04/27/

cardano-network-developers-increase-block-size-by-10/, 2022. [Online;
accessed 20-September-2023].

15. Jared Corduan, Polina Vinogradova, and Matthias Gudemann. A Formal
Specification of the Cardano Ledger. https://github.com/input-output-hk/

cardano-ledger/releases/latest/download/shelley-ledger.pdf, 2019. [On-
line; accessed 20-September-2023].

16. Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros
praos: An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018, Part II, vol-
ume 10821 of LNCS, pages 66–98. Springer, Heidelberg, April / May 2018.

17. Muhammed F. Esgin, Oguzhan Ersoy, Veronika Kuchta, Julian Loss, Amin Sakzad,
Ron Steinfeld, Wayne Yang, and Raymond K. Zhao. A new look at blockchain
leader election: Simple, efficient, sustainable and post-quantum. Cryptology ePrint
Archive, Report 2022/993, 2022. https://eprint.iacr.org/2022/993.

18. Nils Fleischhacker, Mathias Hall-Andersen, Mark Simkin, and Benedikt Wagner.
Jackpot: Non-interactive aggregatable lotteries. Cryptology ePrint Archive, Paper
2023/1570, 2023. https://eprint.iacr.org/2023/1570.

20

https://www.coindesk.com/tech/2022/04/27/cardano-network-developers-increase-block-size-by-10/
https://www.coindesk.com/tech/2022/04/27/cardano-network-developers-increase-block-size-by-10/
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/input-output-hk/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://eprint.iacr.org/2022/993
https://eprint.iacr.org/2023/1570

19. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Elisabeth Oswald and Marc Fischlin, edi-
tors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 281–310. Springer,
Heidelberg, April 2015.

20. Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. Proof-of-stake sidechains. In
2019 IEEE Symposium on Security and Privacy, pages 139–156. IEEE Computer
Society Press, May 2019.

21. Craig Gentry, Shai Halevi, Hugo Krawczyk, Bernardo Magri, Jesper Buus Nielsen,
Tal Rabin, and Sophia Yakoubov. YOSO: You only speak once - secure MPC with
stateless ephemeral roles. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021,
Part II, volume 12826 of LNCS, pages 64–93, Virtual Event, August 2021. Springer,
Heidelberg.

22. Rishab Goyal and Vipul Goyal. Overcoming cryptographic impossibility results
using blockchains. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part I,
volume 10677 of LNCS, pages 529–561. Springer, Heidelberg, November 2017.

23. Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing
and verifying. In Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages
332–354. Springer, Heidelberg, August 2001.

24. Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
Ouroboros: A provably secure proof-of-stake blockchain protocol. In Jonathan
Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS,
pages 357–388. Springer, Heidelberg, August 2017.

25. Di Ma and Gene Tsudik. Extended abstract: Forward-secure sequential aggregate
authentication. In 2007 IEEE Symposium on Security and Privacy, pages 86–91.
IEEE Computer Society Press, May 2007.

26. Di Ma and Gene Tsudik. Forward-secure sequential aggregate authentication.
Cryptology ePrint Archive, Report 2007/052, 2007. https://eprint.iacr.org/

2007/052.

27. Bitcoin Magazine. What is the Bitcoin block size limit? https://

bitcoinmagazine.com/guides/what-is-the-bitcoin-block-size-limit, 2022.
[Online; accessed 20-September-2023].

28. Giulio Malavolta. Key-homomorphic and aggregate verifiable random functions.
Cryptology ePrint Archive, Paper 2024/643, 2024. https://eprint.iacr.org/

2024/643.

29. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions.
In 40th FOCS, pages 120–130. IEEE Computer Society Press, October 1999.

30. Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in
asynchronous networks. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part II, volume 10211 of LNCS, pages 643–673. Springer,
Heidelberg, April / May 2017.

A UC Security Framework

We work in the Universal Composability framework of [9], to which we refer inter-
ested readers for further details. In this security framework a protocol execution
is represented by a group of ITIs called the main machines. These machines con-
stitute the protocol together with two additional ITIs called the environment Z
and the adversary A.

21

https://eprint.iacr.org/2007/052
https://eprint.iacr.org/2007/052
https://bitcoinmagazine.com/guides/what-is-the-bitcoin-block-size-limit
https://bitcoinmagazine.com/guides/what-is-the-bitcoin-block-size-limit
https://eprint.iacr.org/2024/643
https://eprint.iacr.org/2024/643

The main machines executing the protocol are associated with a protocol
session id (SID) and each of the machines can be uniquely identified within a
protocol session by a so-called party id (PID). A protocol execution is subject
to the rules set by an appropriate control function. In particular, during an
execution the environment Z orchestrates the machines only by providing inputs
and receiving the outputs.

The adversary A is allowed to communicate using so-called backdoor tapes
with other ITIs in the same session. Here, a corruption by A can be modeled
merely as the ITI receiving a special corruption message fromA and subsequently
acting in an appropriate manner dictated by the protocol.

Consider an environment Z with input z ∈ {0, 1}poly(λ) where λ denotes
the security parameter. EXECΠ,A,Z denotes the probability distribution en-
semble {EXEC⋄,A,Z(z)}z∈{0,1}poly(λ) and represents the binary outputs of the
environments with initial input being some polynomial function of the security
parameter.

Analogously let EXECF,S,Z denote the probability distribution ensemble
{EXECF,S,Z(z)}z∈{0,1}poly(λ) . WhenΠ is randomized, indistinguishability is guar-
anteed even when the distribution of outputs of Π are viewed jointly with the
output of A (and similarly for F and S). We say a protocol Π UC-realizes a
functionality F when for any environment Z and any adversary A, running in
polynomial time in λ, it holds that EXECF,S,Z ≈ EXECΠ,A,Z .

Setup Assumptions Our construction of A-KE-VRF is in the random oracle
model, which is formalized in the UC framework as FRO-hybrid model, i.e.,
where parties have access to functionality FRO as setup.

Functionality FRO

Functionality FRO interacts with parties P1, . . . , Pn and ideal adversary S. FRO is
parameterized by an image set Y and maintains an initially empty list H.
Query. Upon receiving a message (Query, sid,m), FRO proceeds as follows:

– If there is no pair (m, y) in H, sample y
$← Y and add (m, y) to H.

– Retrieve the pair (m, y) from H and return (Response, sid, y).

Fig. 4. Random Oracle Functionality FRO

B Game based Definitions of VRFs and relations to UC
A-KE-VRF

We recall standard game based definitions of VRFs and argue that our UC notion
of A-KE-VRF implies these game based notions.

Definition 2 (Verifiable Random Function [29]). Let ParamGen,KeyGen,
Eval, Verify be polynomial-time algorithms with the following description:

22

ParamGen(1λ): On input a security parameter 1λ, the algorithm outputs global,
public parameters pp.
KeyGen(pp): On input public parameters pp the algorithm outputs a pair (pk, sk)
named a public and secret key, respectively.
Eval(sk, x): On input a secret key sk and input x ∈ X , the algorithm outputs a
pair (y, π) where y ∈ Y is the VRF evaluation value and π is the proof of correct
evaluation of y.
Verify(pk, y, x, π): On input public key pk, VRF evaluation value y, input x and
proof of correct evaluation π, the algorithm outputs a bit b ∈ {0, 1}.
Provability For any pair (y, π)← Eval(sk, x) such that (pk, sk)← KeyGen(pp)
and pp← ParamGen(1λ), it holds that Verify(pk, y, x, π) outputs 1.
Pseudorandomness Let A = (A1,A2) be a polynomial-time adversary. A
VRF scheme satifies pseudorandomness if A when engaged in the experiment
Exp-PRand (described below) wins the game with probability 1

2 + negl(λ).

The standard definition of VRF does not take into consideraiton the notion
of key evolution and forward security. Although the scheme in [17] satisfies a
notion of forward security, it is tailor made for a specific blockchain protocol,
which hinders our goal of providing a general construction. Hence, we present
an informal definition of key evolving VRF.

Definition 3 (Key Evolving VRF (Informal)). A VRF scheme (Defini-
tion 2) satisfying the following additional key-evolving property is called an
forward secure VRF. This scheme is define by adding a key update algorithm
ski+1 ← Update(ski) that takes as input a VRF secret key ski and outputs an
unpredictable new secret key ski+1. In a key evolving VRF, an adversary A who
has a key ski cannot forge a proof π or obtain a VRF output y with respect to
a previous key ski′ such that i′ < i for any input x that has not been previously
evaluated under secret key ski′ except with negligible probability.

Given our UC notion of A-KE-VRF, it is easy to see that any scheme that
UC-realizes FA-KE-VRF. The argument is that any adversary that breaks the def-
initions above, can be used in a black box way to construct an environment that
distinguishes a real world execution of the VRF scheme from an ideal world exe-
cution of FA-KE-VRF. Indeed, an adversary that succeeds in forging a VRF proof,
can be used by an environment to construct such a forgery for an arbitrary se-
cret key sk and input x, then forcing the ideal world execution to evaluate the
VRF on x (where this evaluation would be simulated), identifying the forgery.
The same argument goes for pseudorandomness, since an adversary who break
the pseudorandomness property can be used by the environment to generate a
non-pseudorandom output y for a given input x, which can be used to distin-
guish the real world execution from the ideal world execution when the same
input x is evaluated in the ideal world (which would provide a pseudorandom
output). As for forward security, an adversary breaking forward security can be
used to generate an output y for an input x that has not been previously eval-
uated under a secret key sk, which again helps distinguishing executions when

23

the environment instructs the ideal execution to evaluate the VRF on input x
(which would not be possible).

C Security Analysis of A-KE-VRF Construction
(Remainder of proof of Theorem 1)

We show that the simulator S described in Section 3.1 interacts with the func-
tionality FA-KE-VRF and an internal copy of A, producing towards the envi-
ronment a transcript that is indistinguishable from that of the real protocol
ΠA-KE-VRF interacting with the adversary A.

Analysis of Simulator. We recall the two probability ensembles, namely
EXECFA-KE-VRF,S,Z , representing the environment Z interacting with the func-
tionality FA-KE-VRF and the simulator S (ideal world), and EXECΠA-KE-VRF,A,Z
where the environment interacts with the adversary A in the context of the real
protocol ΠA-KE-VRF (real world). In the following, we argue that the two ensem-
bles are, in fact, indistinguishable as long as the simulator does not abort. To
that end, we describe the inputs that Z can provide as well as the resulting view
of Z in the real and ideal world, respectively.

Key Generation. When an honest evaluator P ∈ P is instructed by the environ-
ment to do a key generation the functionality first check if the party P is already
registered with a key and otherwise such a key is generated by the simulator.
From the view of the environment, the outputs are identically distributed since
vk is produced in the same manner by the simulator (in the ideal world) and
the honest party (in the real world). The simulator’s attempt to program the
random oracle H0 at one of the values sk1, . . . , skT may fail because an entry,
TH0 [skj] for some j ∈ {1, . . . , T}, has already been recorded. However, this hap-
pens only if the adversary can predict the value of sk1 sampled by the simulator
or if a collision happens when producing the hash sequence sk1, . . . , skT .

Eval and Prove. During evaluation the environment provides as input a vector
of messages to be evaluated m̄ ∈ X ℓ under a verification key vk in period j. In
both the real and ideal world the same verification is done to ensure that j is
in the right range. Now, every mi for i ∈ {1, . . . , ℓ} is treated the same both in
the ideal and real world so (w.l.o.g.) consider an evaluation of a single message
m = mi (if the adversary can distinguish for some mi, it can distinguish for all
m̄). If no proof has been computed for a tuple (vk, j,m), then the new proof
π is computed exactly the same way by the honest evaluator in the protocol
and by the simulator, respectively. The only possible failure is when a collision
happens. That is, the same proof π has already been produced for a different
tuple (vk′, j′,m′). This happens with negligible probability. If the tuple (vk, j,m)
has already been evaluated, π is found in TVRF by the simulator resulting in the
same real world distribution. One exception is the case where the proofs set S
has size |S| > 1. This can lead to ambiguity as to which proof in S the simulator

24

should return to faithfully simulate the real world execution. Fortunately, this is
not a problem since ΠA-KE-VRF deals with unique proofs (BLS-signatures), thus
the simulator always has only a single proof in S to choose from.

Finally, the output values y are distributed uniformly at random in Y in
both worlds. In the real world this is ensured by the random oracle and in the
ideal world this is sampled by the functionality FA-KE-VRF. If an honest party
asks for an evaluation on (vk, j,m) (on behalf of the environment), the sim-
ulator will not know the value y that was sampled inside FA-KE-VRF and re-
ceived by the environment along with the proof π. The environment can now
instruct the adversary A to query the tuple by invoking the random oracle
y′ ← H2(vk|j|π) and check if y = y′. Or, alternatively, the environment can pro-
vide input (Verify, sid, vk, j,m, y, π) and check if the tuple correctly verifies and
thus outputs f = 1. If this “strategy” succeeds, the environment will obviously
be able to distinguish. To avoid such a scenario, the emulation of H2 ensures con-
sistency between TH2 and FA-KE-VRF. In particular, the simulator obtains the list
Leval from the FA-KE-VRF and makes sure that TH2 is programmed and consistent
with VRF outputs generated inside the functionality.

Verification. Consider the party V that provides the tuple (vk, j,m, y, π) for ver-
ification. We define a function Valid : G2×{0, 1}ℓ× [T]×Y ×G1 → {true, false}
that takes the contents of the above tuple as input and returns true if and only
if: 1 ≤ j ≤ T , H2(vk|j|π) = y and e(π, g2) = e(h, vkj) where H2 has different
connotation depending on the (real/ideal) context. We also define failure events
such that Fcol1 and Fcol2 refers to a collision happening in H1 and H2, respec-
tively. And FO refers to the (unfortunate) sampling of the identity element from
G1 by H1. Now, the input/output distribution of the Verify interface in the real
world can be described precisely. Assume that f is the output of the Verify inter-
face and (vk, j,m, y, π) defines the input, then conditioned on Fcol1, Fcol2 and
FO not happening the relationship f = 1 ⇐⇒ Valid(vk, j,m, y, π) = true holds.

From now we argue that the same relationship holds when the environment
is interacting with the simulator S and functionality FA-KE-VRF.
(a) Correctness. When the functionality receives a tuple which is already defined

in its internal database M and where the key vk is such that (·, vk, ·) ∈ PK,
then it immediately responds with f = 1. Since the proof π is present in
S, the evaluator was honest and the proof was generated by the simulator
during EvalProve. Thus, it satisfies Valid(vk, j,m, y, π) = true

(b) Unforgeability. If the functionality receives a tuple with vk = vk′ where
(P, vk′, ·) ∈ PK and P being honest but with a proof π that is not to
be found in any set S in M , then the functionality immediately rejects
f = 0. Since vk = vk′, the only way that Valid(vk, j,m, y, π) = true is if
the environment can produce a valid π without knowledge of the secret key
skj and thus breaking the EUF-CMA property of BLS signatures which we
assume happens with negligible probability.

(c) Consistency. This follows from the fact that if π ∈ S then we may assume
that it is an honest evaluation that satisfies Valid(vk, j,m, y, π) = true and
if π ∈ Q then the proof was deemed invalid during a forgery “attack”.

25

(d) Simulator’s Decision. In this case the functionality sends the tuple (vk, j,m, y,
π) along with Leval. The simulator now decides the value of f and it uses
the exact same algorithm as the real-world protocol to decide f = 0 so
by construction Valid(vk, j,m, y, π) = false. What remains is to identify the
probability that the simulator will abort if Valid(vk, j,m, y, π) = true. This
happens when (vk, j,m, ·, ·) /∈ TVRF but TH2 [vk|j|π] ̸= ⊥. In other words, H2

is already programmed on a (valid) entry defined by the tuple (vk, j,m) but
no entry is found in TVRF.

Aggregation and Aggregate Verification. The analysis follows similarly from the
standard verification simulation. Notice that S responds to queries from FA-KE-VRF

for aggregation and aggregated verification by executing the same protocol steps
as an honest party in the real world protocol. Hence, the simulation is indistin-
guishable unless A finds a collision for one of the random oracles or forges an
aggregate BLS signature. Since we have already established that collisions can
only be found with negligible probability and the BLS scheme is proven secure,
it follows that S’s behavior in these procedures is computationally indistinguish-
able from the real world execution with A.

Corruption of Pi. An honest party Pi ∈ P in the real world performs secure
erasures between evaluations. Thus, we can assume that upon corruption the
adversary is only given the key ski,j+1 (where j represents the time period of
the latest evaluation). In the ideal world, the simulator retrieves ski,j+1 using its
local tables Tsk and TH0 . Since the simulator has computed the keys in exactly
the same way as the protocol, the view of the adversary upon corrupting the
evaluator is indistinguishable (ignoring RO collisions). Finally, since the y-values
sampled by the functionality (from honest evaluations) are added to TH2 before
handing over the control of the honest party to the adversary, then the state of
the random oracle is consistent with the view of the adversary upon corruption.

This concludes our argument and establishes Theorem 1. ⊓⊔

D Defining Encryption to the Future (EtF) and
Authentication from the Past (AfP)

In this appendix, we repeat the summary of the model for Encryption to the
Future (EtF) and Authentication from the Past (AfP) from [8] as presented
in [11] in almost verbatim form.

D.1 The Blockchain Model

We use the model for Encryption to the Future (EtF) from [8], which defines
this primitive with respect to a blockchain ledger that has an built-in lottery
mechanism. Before presenting the definition of EtF and related concepts, we
recall the model for blockchain ledgers from [22], which is used to state the
definitions of [8] and that captures properties of natural Proof-of-Stake (PoS)

26

based protocols such as [16]. In this section, we give an overview of the framework
from [22] for arguing about PoS blockchain protocol security as presented in [8].

Blockchain Structure. A genesis block B0 = ((Sig.pk1, aux1, stake1), . . . ,
(Sig.pkn, auxn, staken), aux) associates each party Pi to a signature scheme pub-
lic key Sig.pki, an amount of stake stakei and auxiliary information auxi (i.e.
any other relevant information required by the blockchain protocol). As in [16],
we assume that the genesis block is generated by an initialization functionality
FINIT that registers all parties’ Sig.pki, auxi when the execution starts and assigns
stakei for Pi. Within the execution model of [22], FINIT is executed by the envi-
ronment. A blockchain B relative to a genesis block B0 is a sequence of blocks
B1, . . . , Bn associated with a strictly increasing sequence of slots sl1, . . . , slm such
that Bi = (slj , H(Bi−1), d, aux), where slj indicates the time slot that Bi occu-
pies, H(Bi−1) is a collision resistant hash of the previous block, d is data and aux
is auxiliary information required by the blockchain protocol (e.g. a proof that
the block is valid for slot slj). We denote by B⌈ℓ the chain (sequence of blocks)
B where the last ℓ blocks have been removed and if ℓ ≥ |B| then B⌈ℓ = ϵ. Also,
if B1 is a prefix of B2 we write B1 ⪯ B2. For the sake of simplicity, we identify
each party Pi participating in the protocol by its public key Sig.pki.

Blockchain Protocol Execution. Let the blockchain protocol

ΓV = (UpdateStateV ,GetRecords,Broadcast)

be guarded by a validity predicate V . The algorithms can be described as follows:
– UpdateState(1λ) → bst where bst is the local state of the blockchain along

with metadata.
– GetRecords(1λ, bst)→ B outputs the longest sequence B of valid blocks (wrt.

V).
– Broadcast(1λ,m) Broadcast the message m over the network to all parties

executing the blockchain protocol.
An execution of a blockchain protocol ΓV proceeds by participants running

the algorithm UpdateStateV to get the latest blockchain state, GetRecords to ex-
tract the ledger data structure from a state and Broadcast to distribute messages
which are added to the blockchain if accepted by V . An execution is orchestrated
by an environment Z which classifies parties as either honest or corrupt. All hon-
est parties executes ΓV (1λ) with empty local state bst and all corrupted parties
are controlled by the adversary A who also controls network including delivery
of messages between all parties.
– In each round all honest parties receive a message m from Z and potentially

receive incoming network messages delivered by A. The honest parties may
do computation, broadcast messages and/or update their local states.

– A is responsible for delivering all messages sent by honest parties to all other
parties. A cannot modify messages from honest parties but may delay and
reorder messages on the network.

27

– At any point Z can communicate with adversary A or use GetRecords to
retrieve a view of the local state of any party participating in the protocol.

The result is a random variable EXECΓV

(A,Z, 1λ) denoting the joint view
of all parties (i.e. all inputs, random coins and messages received) in the above
execution. Note that the joint view of all parties fully determines the execution.

We define the view of the adversary as viewA(EXEC
ΓV

(A,Z, 1λ)) and the view of

the party Pi as viewPi
(EXECΓV

(A,Z, 1λ)). If it is clear from the context which
execution the argument is referring to, then we just write viewi. We assume
that it is possible to take a snapshot i.e., a view of the protocol after the first

r rounds have been executed. We denote that by viewr ← EXECΓV

r (A,Z, 1λ).
Furthermore, we can resume the execution departing from this view and continue
until round r̃ resulting in the full view including round r̃ denoted by viewr̃ ←
EXECΓV

(viewr,r̃)(A,Z, 1λ).
We let the function stakei = stake(B, i) take as input a local blockchain B

and a party Pi and output a number representing the stake of party Pi wrt. to
blockchain B. Let the sum of stake controlled by the adversary be stakeA(B),
the total stake held by all parties staketotal(B) and the adversaries relative stake
is stake-ratioA(B). We also consider the PoS-fraction u-stakefrac(B, ℓ) as the
amount of unique stake whose proof is provided in the last ℓ mined blocks. More
precisely, let M be the index i corresponding to miners Pi of the last ℓ blocks
in B then

u-stakefrac(B, ℓ) =

∑
i∈M stake(B, i)

staketotal
.

A note on corruption For simplicity in the above execution we restrict the en-
vironment to only allow static corruption while the execution described in [30]
supports adaptive corruption with erasures.

A note on admissible environments [30] specifies a set of restrictions on A and
Z such that only compliant executions are considered and argues that certain
security properties holds with overwhelming probability for these executions. An
example of such a restriction is that A should deliver network messages to honest
parties within ∆ rounds.

Blockchain Properties. In coming sections we will define what it means to
encrypt to a future state of the blockchain. First, we need to ensure what it
means for a blockchain execution to have evolved from one state to another.
We recall that running a protocol ΓV with appropriate restrictions on A and

Z will yield certain compliant executions EXECΓV

(A,Z, 1λ) where some secu-
rity properties will hold with overwhelming probability. An array of prior works,
including [19, 30], have converged towards a few security properties that char-
acterizes blockchain protocols. These include Common Prefix or Chain Consis-
tency, Chain Quality and Chain Growth. From these basic properties, a number
of stronger properties were derived in [22]. Among them, is the Distinguishable

28

Forking property which will be the main requirement when introducing the EtF
scheme.

Definition 4 (Common Prefix). Let κ ∈ N be the common prefix parameter.
The chains B1, B2 possessed by two honest parties P1 and P2 in slots sl1 < sl2
satisfy B

⌈κ
1 ⪯ B2.

Definition 5 (Chain Growth). Let τ ∈ (0, 1], s ∈
mathbbN and let B1, B2 be as above with the additional restriction that sl1+s ≤
sl2. Then len(B2)− len(B1) ≥ τs where τ is the speed coefficient.

Definition 6 (Chain Quality). Let µ ∈ (0, 1] and κ ∈ N. Consider any set
of consecutive blocks of length at least κ from an honest party’s chain B1. The
ratio of adversarial blocks in the set is 1− µ where µ is the quality coefficient.

Definition 7 (Distinguishable Forking). A blockchain protocol Γ satisfies
(α(·), β(·), ℓ1(·), ℓ2(·))-distinguishable forking property with adversary A in envi-
ronment Z, if there exists negligible functions, negl(·), δ(·) such that for every
λ ∈ N, ℓ ≥ ℓ1(λ), ℓ̃ ≥ ℓ2(λ) it holds that

Pr

 α(λ) + δ(λ) < β(λ) ∧
suf-stake-contrℓ̃(view, β(λ)) = 1 ∧

bd-stake-fork(ℓ,ℓ̃)(view, α(λ) + δ(λ)) = 1

∣∣∣∣∣∣∣ view← EXECΓ (A,Z, 1λ)

≥ 1− negl(λ).

Evolving Blockchains. In an EtF scheme, the future is defined with respect
to a future state of the underlying blockchain. In particular, we want to make
sure that the initial chain B has “correctly” evolved into the final chain B̃.
Otherwise, the adversary can easily simulate a blockchain where it wins a fu-
ture lottery and finds itself with the ability to decrypt. Fortunately, the Dis-
tinguishable Forking property from [22] allows us to distinguish a sufficiently
long chain in an honest execution from a fork generated by the adversary by
looking at the combined amount of stake proven in such a sequence of blocks.
This property is used to construct a predicate called evolved(·, ·). First, let
ΓV = (UpdateStateV ,GetRecords,Broadcast) be a blockchain protocol with va-
lidity predicate V and where the (α, β, ℓ1, ℓ2)-distinguishable forking property
holds. And let B← GetRecords(1λ, st) and B̃← GetRecords(1λ, s̃t).

Definition 8 (Evolved Predicate). An evolved predicate is a polynomial time
function evolved that takes as input blockchains B and B̃

evolved(B, B̃) ∈ {0, 1}.
It outputs 1 if and only if B = B̃ or the following holds (i) V (B) = V (B̃) =

1; (ii) B and B̃ are consistent i.e. B⌈κ ⪯ B̃ where κ is the common pre-
fix parameter; (iii) Let ℓ′ = |B̃| − |B| then it holds that ℓ′ ≥ ℓ1 + ℓ2 and
u-stakefrac(B̃, ℓ′ − ℓ1) > β.

29

Blockchain Lotteries. The vast majority of PoS-based blockchain protocols
has an inbuilt lottery scheme for selecting parties to generate blocks. In this
lottery any party can win the right to generate a block for a certain slot with a
probability proportional to its relative stake in the system. In the model from [8],
a party can decrypt an EtF ciphertext if it wins this lottery. It can be useful to
conduct multiple independent lotteries for the same slot sl, which is associated to
a set of roles P1, . . . ,Pn. Depending on the lottery mechanism, each pair (sl,Pi)
may yield zero, one or multiple winners. A party with access to the blockchain
can locally determine whether it is the lottery winner for a given role by executing
a procedure using its lottery witness skL,i related to (Sig.pki, auxi, stakei), which
may also give the party a proof of winning for others to verify. The definition
below from [8] details what it means for a party to win a lottery.

Definition 9 (Lottery Predicate). A lottery predicate is a polynomial time
function lottery that takes as input a blockchain B, a slot sl, a role P and a
lottery witness skL,i and outputs 1 if and only if the party owning skL,i won the
lottery for the role P in slot sl with respect to the blockchain B.
Formally, we write lottery(B, sl,P, skL,i) ∈ {0, 1}.

It is natural to establish the set of lottery winning keys WB,sl,P for parameters
(B, sl,P). This is the set of eligible keys satisfying the lottery predicate.

D.2 Modelling EtF

We are now ready to present the model of [8] for encryption to the future winner
of a lottery (i.e. EtF). The blocks of an underlying blockchain ledger and their
relative positions in the chain are used to specify points in time. Intuitively, this
notion allows for creating ciphertexts that can only be decrypted by a party that
is selected to perform a certain role R at a future slot sl according to a lottery
scheme associated with a blockchain protocol (i.e. a party that has a lottery
secret key skL,i such that lottery(B̃, sl,P, skL,i) = 1).

Definition 10 (Encryption to the Future). A pair of PPT algorithms E =
(Enc,Dec) in the the context of a blockchain ΓV is an EtF-scheme with evolved
predicate evolved and a lottery predicate lottery. The algorithms work as follows

Encryption. ct← Enc(B, sl,P,m) takes as input an initial blockchain B, a slot
sl, a role P and a message m. It outputs a ciphertext ct - an encryption to
the future.

Decryption. m/⊥ ← Dec(B̃, ct, sk) takes as input a blockchain state B̃, a ci-
phertext ct and a secret key sk and outputs the original message m or ⊥.

30

Correctness. An EtF-scheme is said to be correct if for honest parties i and j,
there exists a negligible function µ such that∣∣∣∣∣∣∣∣∣∣∣∣

Pr

view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
ct← Enc(B, sl,P,m)

evolved(B, B̃) = 1

lottery(B̃, sl,P, sk) = 1

: Dec(B̃, ct, sk) = m

− 1

∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ).

Security. Security is defined with a game GameIND-CPAΓ,A,Z,E described in Algorithm
1, where a challenger C and an adversary A execute an underlying blockchain
protocol with an environment Z as described in Appendix D.1. In this game, A
chooses a blockchain B, a role P for the slot sl and two messages m0 and m1

and sends it all to C, who chooses a random bit b and encrypts the message mb

with the parameters it received and sends ct to A. A continues to execute the
blockchain until an evolved blockchain B̃ is obtained and outputs a bit b′. If the
adversary is a lottery winner for the challenge role P in slot sl, the game outputs
a random bit. If the adversary is not a lottery winner for the challenge role P
in slot sl, the game outputs b⊕ b′. The reason for outputting a random guess in
the game when the challenge role is corrupted is as follows. Normally the output
of the IND-CPA game is b ⊕ b′ and we require it to be 1 with probability 1/2.
This models that the guess b′ is independent of b. This, of course, cannot be the
case when the challenge role is corrupted. We therefore output a random guess
in these cases. After this, any bias of the output away from 1/2 still comes from
b′ being dependent on b.

Algorithm 1 GameIND-CPAΓ,A,Z,E

viewr ← EXECΓ
r (A,Z, 1λ) ▷ A executes Γ with Z until round r

(B, sl,P,m0,m1)← A(viewr
A) ▷ A outputs challenge parameters

b
$← {0, 1}

ct← Enc(B, sl,P,mb)
st← A(viewr

A, ct) ▷ A receives challenge ct
viewr̃ ← EXECΓ

(viewr,r̃)(A,Z, 1λ) ▷ Execute from viewr until round r̃

(B̃, b′)← A(viewr̃
A, st)

if evolved(B, B̃) = 1 then ▷ B̃ is a valid evolution of B
if skA

L,j /∈ WB̃,sl,P then ▷ A does not win role P
return b⊕ b′

return b̂
$← {0, 1}

Definition 11 (IND-CPA Secure EtF). An EtF-scheme E = (Enc,Dec) in the
context of a blockchain protocol Γ executed by PPT machines A and Z is said

31

to be IND-CPA secure if, for any A and Z, there exists a negligible function µ
such that for κ ∈ N: ∣∣∣2 · Pr [GameIND-CPAΓ,A,Z,E = 1

]
− 1

∣∣∣ ≤ µ(λ).

ECW as a Special Case of EtF. In this work, we focus on a special class of
EtF called ECW where the underlying lottery is always conducted with respect
to the current blockchain state. This has the following consequences
1. B = B̃ means that evolved(B, B̃) = 1 is trivially true.
2. The winner of role P in slot sl is already defined in B.

Notice that in ECW there is no need for checking if the blockchain has ’cor-
rectly’ evolved and all lottery parameters (e.g. stake distribution and randomness
extracted from the blockchain) are static. Hence, when constructing an ECW
scheme, the lottery winner is already decided at encryption time. While an ECW
is simpler to realize than a more general EtF, it is shown in [8] that ECW can
be used to instantiate YOSO MPC and then be transformed into EtF given an
identity based encryption scheme.

D.3 Authentication from the Past (AfP)

When the winner of a role S sends a message m to a future role R then it is
typically also needed that R can be sure that the message m came from a party
P which, indeed, won the role S. This concept is formalized as an AfP scheme
as follows.

Definition 12 (Authentication from the Past). A pair of PPT algorithms
U = (Sign,Ver) is a scheme for authenticating messages as a winner of a lottery
in the past in the context of blockchain Γ with lottery predicate lottery such that:
Authenticate. σ ← AfP.Sign(B, sl,S, sk,m) takes as input a blockchain B, a

slot sl, a role S and a message m. It outputs a signature σ that authenticates
the message m.

Verify. {0, 1} ← AfP.Ver(B̃, sl,S, σ,m) uses the blockchain B̃ to ensure that σ
is a signature on m produced by the secret key winning the lottery for slot sl
and role S.

Furthermore, an AfP-scheme has the following properties:
Correctness.∣∣∣∣∣∣∣∣∣∣∣∣

Pr

view← EXECΓ (A,Z, 1λ)
B = GetRecords(viewi)

B̃ = GetRecords(viewj)
σ ← AfP.Sign(B, sl,S, sk,m)

lottery(B, sl,S, sk) = 1

lottery(B̃, sl,S, sk) = 1

: AfP.Ver(B̃, sl,S, σ,m) = 1

− 1

∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ).

In other words, an AfP on a message from an honest party with a view of
the blockchain B can attest to the fact that the sender won the role S in slot

32

sl. If another party, with blockchain B̃ agrees, then the verification algorithm
will output 1.

Security. The EUF-CMA game detailed in 2 is used to define the security of
an AfP scheme. In this game, the adversary has access to a signing oracle
OAfP which it can query with a slot sl, a role S and a message mi, obtain-
ing AfP signatures σi = AfP.Sign(B, sl,S, skj ,mi) where skj ∈ WB,sl,S i.e.
lottery(B, sl,S, skj) = 1. The oracle maintains the list of queries QAfP. For-
mally, an AfP-scheme U is said to be EUF-CMA secure in the context of a
blockchain protocol Γ executed by PPT machines A and Z if there exists a
negligible function µ such that for κ ∈ N:

Pr
[
GameEUF-CMA

Γ,A,Z,U = 1
]
≤ µ(λ).

Algorithm 2 GameEUF-CMA
Γ,A,Z,U

view← EXECΓ (A,Z, 1λ) ▷ A executes Γ with Z
(B, sl,S,m′, σ′)← AOAfP(viewA)
if (m′ ∈ QAfP) ∨ (skAL,j ∈ WB,sl,S) then ▷ AOAfP won or queried illegal m′

return 0
viewr̃ ← EXECΓ

(viewr,r̃)(A,Z, 1λ) ▷ Execute from viewr until round r̃

B̃← GetRecords(viewr̃
i)

if evolved(B, B̃) = 1 then
if Ver(B, sl, S, σ′,m′) = 1 then ▷ A successfully forged an AfP

return 1
return 0

AfP Privacy. The specific privacy property we seek is that an adversary, ob-
serving AfP tags from honest parties, cannot use this information to enhance its
chances in predicting the winners of lotteries for roles for which an AfP tag has
not been published.

Definition 13 (AfP Privacy). An AfP scheme U with corresponding lottery
predicate lottery is private if a PPT adversary is unable to distinguish between the
scenarios defined in 3 and 4 with more than negligible probablity in the security
parameter.
Scenario 0 (b = 0) In this scenario (3) the adversary is first running the blockchain

Γ together with the environment Z. At round r the adversary is allowed to
interact with the oracle OAfP as described in 12. The adversary then continues
the execution until round r̃ where it ouputs a bit b′.

Scenario 1 (b = 1) This scenario (4) is identical to scenario 0 but instead of
interacting with OAfP, the adversary interacts with a simulator S.

33

Algorithm 3 b = 0

viewr ← EXECΓ
r (A,Z, 1λ)

AOAfP(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A,Z, 1λ)

return b′ ← AOAfP(viewr̃
A)

Algorithm 4 b = 1

viewr ← EXECΓ
r (A,Z, 1λ)

AS(viewr
A)

viewr̃ ← EXECΓ
(viewr,r̃)(A,Z, 1λ)

return b′ ← AS(viewr̃
A)

We let GameID-PRIV
Γ,A,Z,U,E denote the game where a coinflip decides whether the

adversary is executed in scenario 0 or scenario 1. We say that the adversary
wins the game (i.e. GameID-PRIV

Γ,A,Z,U,E = 1) iff b′ = b. Finally, an AfP scheme U is
called private in the context of the blockchain Γ and underlying lottery predicate
lottery if the following holds for a negligible function µ.

Pr
[
GameID-PRIV

Γ,A,Z,U,E = 1
]
≤ 1/2 + µ(λ).

E Constructing EtF and AfP

In this appendix, we present the generic constructions of EtF and AfP introduced
in [8] in almost verbatim form.

E.1 Building Blocks

First, we introduce the definitions of the main building blocks as presented in [8]
in almost verbatim form.

Commitment Schemes. We recall the syntax for a commitment scheme C =
(Setup,Commit) below:
– Setup(1λ)→ ck outputs a commitment key. The commitment key ck defines

a message space Sm and a randomizer space Sr.
– Commit(ck, s; ρ) → cm outputs a commitment given as input a message s ∈
Sm and randomness ρ ∈ Sr.

We require a commitment scheme to satisfy the standard properties of binding
and hiding. It is binding if no efficient adversary can come up with two pairs
(s, ρ), (s′, ρ′) such that s ̸= s′ and Commit(ck, s; ρ) = Commit(ck, s′; ρ′) for ck ←
Setup(1λ). The scheme is hiding if for any two s, s′ ∈ Sm, no efficient adversary
can distinguish between a commitment of s and one of s′.

Extractability. In the construction of ECW from cWE shown in [8], the commit-
ments must satisfy an additional property which allows to extract message and
randomness of a commitment. In particular we assume that our setup outputs
both a commitment key and a trapdoor td and that there exists an algorithm Ext
such that Ext(td, cm) outputs (s, ρ) such that cm = Commit(ck, s; ρ). We remark

34

we can generically obtain this property by attaching to the commitment a NIZK
argument of knowledge that shows knowledge of opening, i.e., for the relation
Ropn(cmi; (s, ρ)) ⇐⇒ cmi = Commit(ck, s; ρ).

Witness Encryption over Commitments (cWE). Here, we describe wit-
ness encryption over commitments (cWE), a relaxed notion of witness encryption
(WE) introduced in [8], whose definition we present in almost verbatim form.
In witness encryption parties encrypt to a public input for some NP statement.
In cWE we have two phases: first parties provide a (honestly generated) com-
mitment cm of their private input s. Later, anybody can encrypt to a public
input for an NP statement which also guarantees correct opening of the com-
mitment. Importantly, in applications, the first message in our model can be
reused for many different invocations. As observed in [8], cWE is substantially
weaker than WE and can be constructed based on standard assumptions via a
generic construction from 2-round Oblivious Transfer and Garbled Circuits.

The type of relations we consider are of the following form: a statement
x = (cm, C, y) and a witness πcw = (s, ρ) are in the relation (i.e., (x, πcw) ∈ R)
iff “cm commits to some secret value s using randomness ρ, and C(s) = y”. Here,
C is a circuit in some circuit class C and y is the expected output of the function.

Formally, we define witness encryption over commitments as follows:

Definition 14 (Witness encryption over commitments). Let C = (Setup,
Commit) be a non-interactive commitment scheme. A cWE-scheme for witness
encryption over commitments with circuit class C and commitment scheme C
consists of a pair of algorithms ΠcWE = (Enc,Dec):

Encryption phase. ct← Enc(ck, x,m) on input a commitment key ck, a state-
ment x = (cm, C, y) such that C ∈ C, and a message m ∈ {0, 1}∗, generates
a ciphertext ct.

Decryption phase. m/⊥ ← Dec(ck, ct, πcw) on input a commitment key ck, a
ciphertext ct, and a witness πcw, returns a message m or ⊥.

A cWE should satisfy correctness and semantic security as defined below.

(Perfect) Correctness. An honest prover with a statement x = (cm, C, y) and
witness πcw = (s, ρ) such that cm = Commit(ck, s; ρ) and C(s) = y can always
decrypt with overwhelming probability. More precisely, a cWE with circuit
class C and commitment scheme C has perfect correctness if for all κ ∈ N,
C ∈ C, ck ∈ Range(C.Setup), s ∈ Sm, randomness ρ ∈ Sr, commitment
cm← C.Commit(ck, s; ρ), and bit message m ∈ {0, 1}∗, it holds that

Pr
[
ct← Enc(ck, (cm, C, C(s)),m);m′ ← Dec(ck, ct, (s, ρ)) : m = m′] = 1

(Weak) Semantic Security. Intuitively, encrypting with respect to a false
statement (with honest commitment) produces indistinguishable ciphertexts.
Formally, there exists a negligible function µ such that for all κ ∈ N, all

35

auxiliary strings aux and all PPT adversaries A:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
2 · Pr

ck← C.Setup(1λ)

(st, s, ρ, C, y,m0,m1)← A(ck, aux)

cm← C.Commit(ck, s; ρ); b
$← {0, 1}

ct← Enc(ck, (cm, C, y),mb)

ct := ⊥ if

C(s) = y, C ̸∈ C or |m0| ≠ |m1|

: A(st, ct) = b

− 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ µ(λ).

Later, to show the construction of ECW from cWE, we need a stronger notion
of semantic security where the adversary additionally gets to see ciphertexts of
the challenge message under true statements with unknown to A witnesses.
This property is formalized in [8], where it is shown that weak semantic security
together with hiding of the commitment imply strong semantic security.

E.2 VRF-based Lottery

This section introduces a specific lottery mechanism that is specially interest-
ing as it is based on VRFs and can thus be instantiated from our A-KE-VRF.
The description is taken from [8] in almost verbatim form. The backbone of
the lottery is a VRF scheme VRF as described in [16]. This VRF has the
properties of simulatability and unpredictability under malicious key genera-
tion which will become useful when arguing about security of the AfP. The
VRF scheme is a tuple (VRF.Gen,VRF.Prove,VRF.Verify) where VRF.Gen(1κ)
outputs a pair of keys (VRF.pk,VRF.sk). The VRF.Prove takes as input a value
x and outputs a pair (y, π) ← VRF.ProveVRF.sk(x) which is the output value
y and the correctness certificate π. The verification is then done by evaluat-
ing VRF.VerifyVRF.pk(x, y, π) which outputs 1 iff π attests to the correctness of
y as the output of the VRF evaluated on x with key VRF.sk. We recall the
blockchain setup described in Appendix D.1 where each party Pi is represented
by a pair (Sig.ski, skL,i) associated with public data (Sig.pki, auxi, stakei). Let
auxi contain a VRF public key VRF.pki as described above and let the lot-
tery secret key be skL,i = (Sig.pki,VRF.ski). Finally, we introduce a function
param(B, sl). This function outputs a tuple ({Sig.pki,VRF.pki, stakei}i∈[n], η, ϕ)
associated with the specific blockchain B and slot sl. Beyond obtaining the pub-
lic information (Sig.pki,VRF.pki, stakei) the function also returns a nonce, η, as
well as a public function ϕ(·) which on input stakei computes the threshold for
winning the lottery. The lottery predicate based on the VRF is described in
Algorithm 5.

E.3 ECW from cWE

In this section we show the construction ECW from cWE as presented in [8]
in almost verbatim form. We define our scheme with respect to a set of parties
P = {P1, . . . , Pn} executing a blockchain protocol Γ as described in Appendix D,

36

Algorithm 5 lotteryVRF(B, sl,P, skL,j)

({Sig.pki,VRFL,i, stakei}i∈[n], η, ϕ)← param(B, sl)
(Sig.pkj ,VRF.skj)← skL,j

(y, π)← VRF.ProveskL,j (sl||P||η)
if y < ϕ(stakej) then

if VRF.VerifyvkL,j
(sl||P||η, y, π) = then

return 1
return 0

i.e. each party Pi has access to the blockchain ledger and is associated to a tuple
(Sig.pki, auxi, sti) registered in the genesis block for which it has corresponding
secret keys (Sig.ski, skL,i). Our construction uses as a main building block a
witness encryption scheme over commitments ΠcWE = (EnccWE ,DeccWE); we
assume the commitments to be extractable. The class of circuits C of ΠcWE

includes the lottery predicate lottery(B, sl,P, skL,i). We let each party publish an
initial commitment of its witness. This way we can do without any interaction
for encryption/decryption through a one-time setup where parties publish the
commitments over which all following encryptions are done. We construct our
ECW scheme ΠECW as follows:
System Parameters: We assume that a commitment key Setup(1λ) → ck is
contained in the genesis block B0 of the underlying blockchain.

Setup Phase: All parties Pi ∈ P proceed as follows:
1. Compute a commitment cmi ← Commit(ck, skL,i; ρi) to skL,i using ran-

domness ρi. We abuse the notation and define Pi’s secret key as skL,i||ρi.
2. Compute a signature σi ← SigSig.ski(cmi).

3. Publish (cmi, σi) on the blockchain by executing Broadcast(1λ, (cmi, σi)).
Encryption Enc(B, sl,P,m): Construct a circuit C that encodes the predicate
lottery(B, sl,P, skL,i), where B, sl and P are hardcoded and skL,i is the witness.
Let PSetup be the set of parties with non-zero relative stake and a valid setup
message (cmi, σi) published in the common prefix B⌈κ (if Pi has published
more than one valid (cmi, σi), only the latest one is considered). For every
Pi ∈ PSetup, compute cti ← EnccWE(ck, xi = (cmi, C, 1),m). Output ct =(
B, sl,P, {cti}Pi∈PSetup

)
.

Decryption Dec(B, ct, sk): Given sk := skL,i||ρi such that cmi = Commit(ck,
skL,i; ρi) and lottery(B, sl,P, skL,i) = 1 for parameters B, sl,P from ct, output
m← DeccWE(ck, cti, (skL,i, ρi)). Otherwise, output ⊥.

E.4 Constructing AfP

We present two constructions of AfP: a general one for any lottery predicate and
a specific one for lottery predicates based on VRFs. Both constructions were
introduced in [8], whose description we present in almost verbatim form.

General AfP. In general we can add authentication to a message as shown
in [8]. Recall that Pi wins P if lottery(B, sl,P, skL,i) = 1. Here, R(x = (B, sl,P),

37

πcw) = lottery(x, πcw) is an NP relation where all parties know x but only the
winner knows a witness πcw such that R(x, πcw) = 1. We can therefore use a
signature of knowledge (SoK) [12] to sign m under the knowledge of skL,i such
that lottery(B, sl,P, skL,i) = 1. This will attest that the message m was sent by
a winner of the lottery for P.

VRF-based AfP. Using the VRF-based lottery lotteryVRF, we can construct
a more efficient VRF-based AfP as shown in [8]. We first note that our general
approach of applying a SoK for the knowledge of a secret key still applies. How-
ever, using the structure of the lottery, and in particular the VRF, allows for a
much more efficient AfP which has applications in most PoS settings as well.
The AfP scheme uses a NIZKPoK which has a setup executed as a part of the
blockchain setup such that the CRS is in the genesis block. The algorithms for the
scheme are π ← NIZKPoK.Prove(crs, x, πcw) and {0, 1} ← NIZKPoK.Verify(crs, x, π).
Notice that this construction satisfies both the basic definition of AfP (Defini-
tion 12) and AfP privacy (Definition 13).

Protocol ΠAfP The VRF-based AfP protocol ΠAfP is described below.
Authenticate. σ ← ΠAfP.Sign(B, sl,S, skL,j ,m) To authenticate a message, m,

a party first checks that lotteryVRF(B, sl,S, skL,j) = 1. It then obtains the
output and certificate (y, πVRF) ← VRFrf.ProveVRF.skL,j

(sl||P||η). Finally, it
produces πNIZKPoK ← NIZKPoK.Prove{σSIG | Sig.VerifySig.pkj (σSIG,m) = 1}
which is a NIZK-PoK of a signature produced under Sig.skj .
It then outputs a tuple σAfP ← (Sig.pkj , y, πVRF, πNIZKPoK)

Verify. {0, 1} ← ΠAfP.Verify(B̃, sl,S, σ,m) To verify an AfP tag the verifier ob-
tains parameters from the blockchain ({Sig.pki,VRF.pki, stakei}i∈[n], η, ϕ)←
param(B, sl). It then parses the tag as σAfP ← (Sig.pkj , y, πVRF, πNIZKPoK) and
gets the VRF verification key VRF.pkj for the party that the AfP points to.
It then checks the following
1. Makes sure that VRF.VerifyVRF.pkj (sl||P||η, y, πVRF) = 1 i.e. the VRF out-

put was correctly generated under lottery key of party Pj .
2. Checks that NIZKPoK.Verify(πNIZKPoK, (Sig.pkj ,m)) = 1 which verifies

the proof of signature knowledge.
3. And y < ϕ(stakej) which makes sure that the lottery was conducted

correctly with the stake of Pj .
If all checks go through, the algorithm outputs 1. Otherwise, it outputs 0.

38

	MUSEN: Aggregatable Key-Evolving Verifiable Random Functions and Applications

